» Articles » PMID: 22876166

Asymmetric Methods for the Synthesis of Flavanones, Chromanones, and Azaflavanones

Overview
Specialty Biochemistry
Date 2012 Aug 10
PMID 22876166
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Flavanones, chromanones, and related structures are privileged natural products that display a wide variety of biological activities. Although flavanoids are abundant in nature, there are a limited number of available general and efficient synthetic methods for accessing molecules of this class in a stereoselective manner. Their structurally simple architectures belie the difficulties involved in installation and maintenance of the stereogenic configuration at the C2 position, which can be sensitive and can undergo epimerization under mildly acidic, basic, and thermal reaction conditions. This review presents the methods currently used to access these related structures. The synthetic methods include manipulation of the flavone/flavanone core, carbon-carbon bond formation, and carbon-heteroatom bond formation.

Citing Articles

Enantioselective Synthesis of Aza-Flavanones with an All-Carbon Quaternary Stereocenter via NHC-Catalyzed Intramolecular Annulation.

Baranska I, Slotwinski M, Muziol T, Rafinski Z ACS Omega. 2023; 8(44):41480-41484.

PMID: 37969996 PMC: 10633870. DOI: 10.1021/acsomega.3c05064.


Robust, Enantioselective Construction of Challenging, Biologically Relevant Tertiary Ether Stereocenters.

Guan Y, Buivydas T, Lalisse R, Attard J, Ali R, Stern C ACS Catal. 2023; 11(10):6325-6333.

PMID: 37636585 PMC: 10457089. DOI: 10.1021/acscatal.1c01095.


Highly Enantioselective Catalytic Alkynylation of Quinolones: Substrate Scope, Mechanistic Studies, and Applications in the Syntheses of Chiral -Heterocyclic Alkaloids and Diamines.

Guan Y, Buivydas T, Lalisse R, Laybourn K, Stern C, Richins M ACS Catal. 2023; 13(11):7661-7668.

PMID: 37288090 PMC: 10243307. DOI: 10.1021/acscatal.3c01536.


Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss.

Sharma A, Lee Y, Bat-Ulzii A, Chatterjee S, Bhattacharya M, Chakraborty C Nutrients. 2023; 15(4).

PMID: 36839278 PMC: 9960663. DOI: 10.3390/nu15040919.


Enantioselective Dearomative Alkynylation of Chromanones: Opportunities and Obstacles.

Guan Y, Buivydas T, Lalisse R, Ali R, Hadad C, Mattson A Synthesis (Stuttg). 2023; 54(19):4210-4219.

PMID: 36744023 PMC: 9897304. DOI: 10.1055/a-1811-8075.


References
1.
Veitch N . Isoflavonoids of the leguminosae. Nat Prod Rep. 2007; 24(2):417-64. DOI: 10.1039/b511238a. View

2.
Pearce B, Parker R, Deason M, Dischino D, Gillespie E, Qureshi A . Inhibitors of cholesterol biosynthesis. 2. Hypocholesterolemic and antioxidant activities of benzopyran and tetrahydronaphthalene analogues of the tocotrienols. J Med Chem. 1994; 37(4):526-41. DOI: 10.1021/jm00030a012. View

3.
Chung Y, Fu G . Phosphine-catalyzed enantioselective synthesis of oxygen heterocycles. Angew Chem Int Ed Engl. 2009; 48(12):2225-7. PMC: 2747790. DOI: 10.1002/anie.200805377. View

4.
Farmer R, Biddle M, Nibbs A, Huang X, Bergan R, Scheidt K . Concise syntheses of the abyssinones and discovery of new inhibitors of prostate cancer and MMP-2 expression. ACS Med Chem Lett. 2010; 1(8):400-405. PMC: 2992379. DOI: 10.1021/ml100110x. View

5.
Reynaud J, Guilet D, Terreux R, Lussignol M, Walchshofer N . Isoflavonoids in non-leguminous families: an update. Nat Prod Rep. 2005; 22(4):504-15. DOI: 10.1039/b416248j. View