» Articles » PMID: 22875862

Dendritic Morphology of Pyramidal Neurons in the Chimpanzee Neocortex: Regional Specializations and Comparison to Humans

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2012 Aug 10
PMID 22875862
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

The primate cerebral cortex is characterized by regional variation in the structure of pyramidal neurons, with more complex dendritic arbors and greater spine density observed in prefrontal compared with sensory and motor cortices. Although there are several investigations in humans and other primates, virtually nothing is known about regional variation in the morphology of pyramidal neurons in the cerebral cortex of great apes, humans' closest living relatives. The current study uses the rapid Golgi stain to quantify the dendritic structure of layer III pyramidal neurons in 4 areas of the chimpanzee cerebral cortex: Primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortex. Consistent with previous studies in humans and macaque monkeys, pyramidal neurons in the prefrontal cortex of chimpanzees exhibit greater dendritic complexity than those in other cortical regions, suggesting that prefrontal cortical evolution in primates is characterized by increased potential for integrative connectivity. Compared with chimpanzees, the pyramidal neurons of humans had significantly longer and more branched dendritic arbors in all cortical regions.

Citing Articles

Selective expansion of motor cortical projections in the evolution of vocal novelty.

Isko E, Harpole C, Zheng X, Zhan H, Davis M, Zador A bioRxiv. 2024; .

PMID: 39484467 PMC: 11526862. DOI: 10.1101/2024.09.13.612752.


Unraveling mechanisms of human brain evolution.

Lancaster M Cell. 2024; 187(21):5838-5857.

PMID: 39423803 PMC: 7617105. DOI: 10.1016/j.cell.2024.08.052.


A molecular and cellular perspective on human brain evolution and tempo.

Lindhout F, Krienen F, Pollard K, Lancaster M Nature. 2024; 630(8017):596-608.

PMID: 38898293 DOI: 10.1038/s41586-024-07521-x.


Evolution of Glutamate Metabolism via Enhances Lactate-Dependent Synaptic Plasticity and Complex Cognition.

Plaitakis A, Sidiropoulou K, Kotzamani D, Litso I, Zaganas I, Spanaki C Int J Mol Sci. 2024; 25(10).

PMID: 38791334 PMC: 11120665. DOI: 10.3390/ijms25105297.


Key morphological features of human pyramidal neurons.

Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Fernaud-Espinosa I, Tapia-Gonzalez S, DeFelipe J Cereb Cortex. 2024; 34(5.

PMID: 38745556 PMC: 11094408. DOI: 10.1093/cercor/bhae180.


References
1.
Elston G, Benavides-Piccione R, Elston A, Manger P, DeFelipe J . Specialization in pyramidal cell structure in the sensory-motor cortex of the Chacma baboon (Papio ursinus) with comparative notes on macaque and vervet monkeys. Anat Rec A Discov Mol Cell Evol Biol. 2005; 286(1):854-65. DOI: 10.1002/ar.a.20217. View

2.
Koenderink M, Uylings H . Morphometric dendritic field analysis of pyramidal neurons in the human prefrontal cortex: relation to section thickness. J Neurosci Methods. 1996; 64(1):115-22. DOI: 10.1016/0165-0270(95)00117-4. View

3.
Uddin M, Wildman D, Liu G, Xu W, Johnson R, Hof P . Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc Natl Acad Sci U S A. 2004; 101(9):2957-62. PMC: 365727. DOI: 10.1073/pnas.0308725100. View

4.
Travis K, Ford K, Jacobs B . Regional dendritic variation in neonatal human cortex: a quantitative Golgi study. Dev Neurosci. 2005; 27(5):277-87. DOI: 10.1159/000086707. View

5.
Jacobs B, SCHEIBEL A . A quantitative dendritic analysis of Wernicke's area in humans. I. Lifespan changes. J Comp Neurol. 1993; 327(1):83-96. DOI: 10.1002/cne.903270107. View