» Articles » PMID: 10445291

Cortical Integration in the Visual System of the Macaque Monkey: Large-scale Morphological Differences in the Pyramidal Neurons in the Occipital, Parietal and Temporal Lobes

Overview
Journal Proc Biol Sci
Specialty Biology
Date 1999 Aug 13
PMID 10445291
Citations 34
Authors
Affiliations
Soon will be listed here.
Abstract

Layer III pyramidal neurons were injected with Lucifer yellow in tangential cortical slices taken from the inferior temporal cortex (area TE) and the superior temporal polysensory (STP) area of the macaque monkey. Basal dendritic field areas of layer III pyramidal neurons in area STP are significantly larger, and their dendritic arborizations more complex, than those of cells in area TE. Moreover, the dendritic fields of layer III pyramidal neurons in both STP and TE are many times larger and more complex than those in areas forming 'lower' stages in cortical visual processing, such as the first (V1), second (V2), fourth (V4) and middle temporal (MT) visual areas. By combining data on spine density with those of Sholl analyses, we were able to estimate the average number of spines in the basal dendritic field of layer III pyramidal neurons in each area. These calculations revealed a 13-fold difference in the number of spines in the basal dendritic field between areas STP and V1 in animals of similar age. The large differences in complexity of the same kind of neuron in different visual areas go against arguments for isopotentiality of different cortical regions and provide a basis that allows pyramidal neurons in temporal areas TE and STP to integrate more inputs than neurons in more caudal visual areas.

Citing Articles

The primate cortical LFP exhibits multiple spectral and temporal gradients and widespread task dependence during visual short-term memory.

Hoffman S, Dotson N, Lima V, Gray C J Neurophysiol. 2024; 132(1):206-225.

PMID: 38842507 PMC: 11383615. DOI: 10.1152/jn.00264.2023.


Key morphological features of human pyramidal neurons.

Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Fernaud-Espinosa I, Tapia-Gonzalez S, DeFelipe J Cereb Cortex. 2024; 34(5.

PMID: 38745556 PMC: 11094408. DOI: 10.1093/cercor/bhae180.


The Primate Cortical LFP Exhibits Multiple Spectral and Temporal Gradients and Widespread Task-Dependence During Visual Short-Term Memory.

Hoffman S, Dotson N, Lima V, Gray C bioRxiv. 2024; .

PMID: 38352585 PMC: 10862751. DOI: 10.1101/2024.01.29.577843.


Pre-saccadic Neural Enhancements in Marmoset Area MT.

Coop S, Yates J, Mitchell J J Neurosci. 2023; 44(4).

PMID: 38050176 PMC: 10860570. DOI: 10.1523/JNEUROSCI.2034-22.2023.


Transcriptomic cytoarchitecture reveals principles of human neocortex organization.

Jorstad N, Close J, Johansen N, Yanny A, Barkan E, Travaglini K Science. 2023; 382(6667):eadf6812.

PMID: 37824655 PMC: 11687949. DOI: 10.1126/science.adf6812.


References
1.
Beaulieu C, Kisvarday Z, Somogyi P, Cynader M, Cowey A . Quantitative distribution of GABA-immunopositive and -immunonegative neurons and synapses in the monkey striate cortex (area 17). Cereb Cortex. 1992; 2(4):295-309. DOI: 10.1093/cercor/2.4.295. View

2.
Miyashita Y, Date A, Okuno H . Configurational encoding of complex visual forms by single neurons of monkey temporal cortex. Neuropsychologia. 1993; 31(10):1119-31. DOI: 10.1016/0028-3932(93)90036-y. View

3.
GROSS C, Bender D, ROCHA-MIRANDA C . Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science. 1969; 166(3910):1303-6. DOI: 10.1126/science.166.3910.1303. View

4.
Buhl E, Schlote W . Intracellular lucifer yellow staining and electron microscopy of neurones in slices of fixed epitumourous human cortical tissue. Acta Neuropathol. 1987; 75(2):140-6. DOI: 10.1007/BF00687074. View

5.
Rolls E . Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Philos Trans R Soc Lond B Biol Sci. 1992; 335(1273):11-20; discussion 20-1. DOI: 10.1098/rstb.1992.0002. View