» Articles » PMID: 22853910

Probing the Elasticity of DNA on Short Length Scales by Modeling Supercoiling Under Tension

Overview
Journal Biophys J
Publisher Cell Press
Specialty Biophysics
Date 2012 Aug 3
PMID 22853910
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The wormlike-chain (WLC) model is widely used to describe the energetics of DNA bending. Motivated by recent experiments, alternative, so-called subelastic chain models were proposed that predict a lower elastic energy of highly bent DNA conformations. Until now, no unambiguous verification of these models has been obtained because probing the elasticity of DNA on short length scales remains challenging. Here we investigate the limits of the WLC model using coarse-grained Monte Carlo simulations to model the supercoiling of linear DNA molecules under tension. At a critical supercoiling density, the DNA extension decreases abruptly due to the sudden formation of a plectonemic structure. This buckling transition is caused by the large energy required to form the tightly bent end-loop of the plectoneme and should therefore provide a sensitive benchmark for model evaluation. Although simulations based on the WLC energetics could quantitatively reproduce the buckling measured in magnetic tweezers experiments, the buckling almost disappears for the tested linear subelastic chain model. Thus, our data support the validity of a harmonic bending potential even for small bending radii down to 3.5 nm.

Citing Articles

Exploring protein-mediated compaction of DNA by coarse-grained simulations and unsupervised learning.

de Jager M, Kolbeck P, Vanderlinden W, Lipfert J, Filion L Biophys J. 2024; 123(18):3231-3241.

PMID: 39044429 PMC: 11427786. DOI: 10.1016/j.bpj.2024.07.023.


DNA supercoiling in bacteria: state of play and challenges from a viewpoint of physics based modeling.

Junier I, Ghobadpour E, Espeli O, Everaers R Front Microbiol. 2023; 14:1192831.

PMID: 37965550 PMC: 10642903. DOI: 10.3389/fmicb.2023.1192831.


Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system.

Aldag P, Rutkauskas M, Madariaga-Marcos J, Songailiene I, Sinkunas T, Kemmerich F Nat Commun. 2023; 14(1):3654.

PMID: 37339984 PMC: 10281945. DOI: 10.1038/s41467-023-38790-1.


A quantitative model for the dynamics of target recognition and off-target rejection by the CRISPR-Cas Cascade complex.

Rutkauskas M, Songailiene I, Irmisch P, Kemmerich F, Sinkunas T, Siksnys V Nat Commun. 2022; 13(1):7460.

PMID: 36460652 PMC: 9718816. DOI: 10.1038/s41467-022-35116-5.


Probing the stability of the SpCas9-DNA complex after cleavage.

Aldag P, Welzel F, Jakob L, Schmidbauer A, Rutkauskas M, Fettes F Nucleic Acids Res. 2021; 49(21):12411-12421.

PMID: 34792162 PMC: 8643700. DOI: 10.1093/nar/gkab1072.


References
1.
Kauert D, Kurth T, Liedl T, Seidel R . Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 2011; 11(12):5558-63. DOI: 10.1021/nl203503s. View

2.
Wang M, Yin H, Landick R, Gelles J, Block S . Stretching DNA with optical tweezers. Biophys J. 1997; 72(3):1335-46. PMC: 1184516. DOI: 10.1016/S0006-3495(97)78780-0. View

3.
Yuan C, Chen H, Lou X, Archer L . DNA bending stiffness on small length scales. Phys Rev Lett. 2008; 100(1):018102. DOI: 10.1103/PhysRevLett.100.018102. View

4.
Cherstvy A . Torque-induced deformations of charged elastic DNA rods: thin helices, loops, and precursors of DNA supercoiling. J Biol Phys. 2012; 37(2):227-38. PMC: 3047199. DOI: 10.1007/s10867-010-9211-7. View

5.
Klenin K, Merlitz H, Langowski J . A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys J. 1998; 74(2 Pt 1):780-8. PMC: 1302559. DOI: 10.1016/S0006-3495(98)74003-2. View