» Articles » PMID: 22833322

Stem Cell Educator Therapy and Induction of Immune Balance

Overview
Journal Curr Diab Rep
Publisher Current Science
Specialty Endocrinology
Date 2012 Jul 27
PMID 22833322
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes the deficit of pancreatic islet β cells. A true cure has proven elusive despite intensive research pressure by using conventional approaches over the past 25 years. The situation highlights the challenges we face in conquering this disease. Alternative approaches are needed. Increasing evidence demonstrates that stem cells possess the function of immune modulation. We established the Stem Cell Educator therapy by using cord blood-derived multipotent stem cells (CB-SCs). A closed-loop system that circulates a patient's blood through a blood cell separator, briefly co-cultures the patient's lymphocytes with adherent CB-SCs in vitro, and returns the educated lymphocytes (but not the CB-SCs) to the patient's circulation. Our clinical trial reveals that a single treatment with the Stem Cell Educator provides lasting reversal of autoimmunity that allows regeneration of islet β cells and improvement of metabolic control in subjects with long-standing T1D.

Citing Articles

Revisiting the Pathogenesis of Type 1 Diabetes: Importance of Neural Input to Pancreatic Islets and the Therapeutic Capability of Stem Cell Educator Therapy to Restore Their Integrity.

Zhao Y, Veysman B Biomedicines. 2023; 11(2).

PMID: 36831130 PMC: 9952924. DOI: 10.3390/biomedicines11020594.


Challenges with Cell-based Therapies for Type 1 Diabetes Mellitus.

Siwakoti P, Rennie C, Huang Y, Li J, Tuch B, McClements L Stem Cell Rev Rep. 2022; 19(3):601-624.

PMID: 36434300 DOI: 10.1007/s12015-022-10482-1.


Stem Cell Transplantation in the Treatment of Type 1 Diabetes Mellitus: From Insulin Replacement to Beta-Cell Replacement.

Wan X, Zhang D, Khan M, Zheng S, Hu X, Zhang Q Front Endocrinol (Lausanne). 2022; 13:859638.

PMID: 35370989 PMC: 8972968. DOI: 10.3389/fendo.2022.859638.


Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact.

Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M Cell Mol Life Sci. 2022; 79(3):177.

PMID: 35247083 PMC: 11073024. DOI: 10.1007/s00018-022-04207-3.


Further comments on the role of ACE-2 positive macrophages in human lung.

Hu W, Song X, Yu H, Zhao L, Zhao Y, Zhao Y Cytometry A. 2021; 103(2):146-152.

PMID: 34355866 PMC: 8426751. DOI: 10.1002/cyto.a.24484.


References
1.
Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts A . Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008; 2(2):141-50. DOI: 10.1016/j.stem.2007.11.014. View

2.
Zhao Y, Huang Z, Lazzarini P, Wang Y, Di A, Chen M . A unique human blood-derived cell population displays high potential for producing insulin. Biochem Biophys Res Commun. 2007; 360(1):205-11. DOI: 10.1016/j.bbrc.2007.06.035. View

3.
Jung S, Panchalingam K, Rosenberg L, Behie L . Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 2012; 2012:123030. PMC: 3356989. DOI: 10.1155/2012/123030. View

4.
von Herrath M, Nepom G . Animal models of human type 1 diabetes. Nat Immunol. 2009; 10(2):129-32. DOI: 10.1038/ni0209-129. View

5.
Keating A . Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012; 10(6):709-716. DOI: 10.1016/j.stem.2012.05.015. View