» Articles » PMID: 22767088

Fabrication and Operation of GRIN Probes for in Vivo Fluorescence Cellular Imaging of Internal Organs in Small Animals

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2012 Jul 7
PMID 22767088
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Intravital fluorescence microscopy has emerged as a powerful technique to visualize cellular processes in vivo. However, owing to their size, the objective lenses required have limited physical accessibility to various tissue sites in the internal organs of small animals. The use of small-diameter probes using graded-index (GRIN) lenses expands the capabilities of conventional intravital microscopes to minimally invasive imaging of internal organs. In this protocol, we describe the detailed steps for the fabrication of front- and side-view GRIN probes and the integration and operation of the probes in a confocal microscope to enable visualization of fluorescent cells and microvasculature in various mouse organs. Some experience in building an optical setup is required to complete the protocol. We also present longitudinal imaging of immune cells in renal allografts and tumor development in the colon. Fabrication and integration can be completed in 5-7 h, and a typical in vivo imaging session takes 1-2 h.

Citing Articles

Intravital two-photon microscopy of the native mouse thymus.

Seyedhassantehrani N, Burns C, Verrinder R, Okafor V, Abbasizadeh N, Spencer J PLoS One. 2024; 19(8):e0307962.

PMID: 39088574 PMC: 11293686. DOI: 10.1371/journal.pone.0307962.


Miniaturized, high numerical aperture confocal fluorescence detection enhanced with pyroelectric droplet accumulation for sub-attomole analyte diagnosis.

Nie Y, Sanna U, Sipola T, Kokkonen A, Pakkila I, Sumen J Biomed Opt Express. 2024; 14(12):6138-6150.

PMID: 38420309 PMC: 10898570. DOI: 10.1364/BOE.504757.


Enhanced light focusing inside scattering media with shaped ultrasound.

Mestre-Tora B, Duocastella M Sci Rep. 2023; 13(1):11511.

PMID: 37460784 PMC: 10352373. DOI: 10.1038/s41598-023-38598-5.


Spectral Multiplexing of Fluorescent Endoscopy for Simultaneous Imaging with Multiple Fluorophores and Multiple Fields of View.

Paulson B, Bohlooli Darian S, Kim Y, Oh J, Ghasemi M, Lee K Biosensors (Basel). 2023; 13(1).

PMID: 36671868 PMC: 9855833. DOI: 10.3390/bios13010033.


Learned end-to-end high-resolution lensless fiber imaging towards real-time cancer diagnosis.

Wu J, Wang T, Uckermann O, Galli R, Schackert G, Cao L Sci Rep. 2022; 12(1):18846.

PMID: 36344626 PMC: 9640670. DOI: 10.1038/s41598-022-23490-5.


References
1.
Dela Cruz J, McMullen J, Williams R, Zipfel W . Feasibility of using multiphoton excited tissue autofluorescence for in vivo human histopathology. Biomed Opt Express. 2011; 1(5):1320-1330. PMC: 3018110. DOI: 10.1364/BOE.1.001320. View

2.
Jung J, Schnitzer M . Multiphoton endoscopy. Opt Lett. 2003; 28(11):902-4. DOI: 10.1364/ol.28.000902. View

3.
Hsiung P, Hsiung P, Hardy J, Friedland S, Soetikno R, Du C . Detection of colonic dysplasia in vivo using a targeted heptapeptide and confocal microendoscopy. Nat Med. 2008; 14(4):454-8. PMC: 3324975. DOI: 10.1038/nm1692. View

4.
Kim P, Puorishaag M, Cote D, Lin C, Yun S . In vivo confocal and multiphoton microendoscopy. J Biomed Opt. 2008; 13(1):010501. PMC: 2752311. DOI: 10.1117/1.2839043. View

5.
Kim P, Chung E, Yamashita H, Hung K, Mizoguchi A, Kucherlapati R . In vivo wide-area cellular imaging by side-view endomicroscopy. Nat Methods. 2010; 7(4):303-5. PMC: 2849759. DOI: 10.1038/nmeth.1440. View