» Articles » PMID: 22763445

The Human CST Complex is a Terminator of Telomerase Activity

Overview
Journal Nature
Specialty Science
Date 2012 Jul 6
PMID 22763445
Citations 223
Authors
Affiliations
Soon will be listed here.
Abstract

The lengths of human telomeres, which protect chromosome ends from degradation and end fusions, are crucial determinants of cell lifespan. During embryogenesis and in cancer, the telomerase enzyme counteracts telomeric DNA shortening. As shown in cancer cells, human telomerase binds the shelterin component TPP1 at telomeres during the S phase of the cell cycle, and adds ~60 nucleotides in a single round of extension, after which telomerase is turned off by unknown mechanisms. Here we show that the human CST (CTC1, STN1 and TEN1) complex, previously implicated in telomere protection and DNA metabolism, inhibits telomerase activity through primer sequestration and physical interaction with the protection of telomeres 1 (POT1)–TPP1 telomerase processivity factor. CST competes with POT1–TPP1 for telomeric DNA, and CST–telomeric-DNA binding increases during late S/G2 phase only on telomerase action, coinciding with telomerase shut-off. Depletion of CST allows excessive telomerase activity, promoting telomere elongation. We propose that through binding of the telomerase-extended telomere, CST limits telomerase action at individual telomeres to approximately one binding and extension event per cell cycle. Our findings define the sequence of events that occur to first enable and then terminate telomerase-mediated telomere elongation.

Citing Articles

Canonical and non-canonical functions of the non-coding RNA component (TERC) of telomerase complex.

Cao C, Gong W, Shuai Y, Rasouli S, Ge Q, Khan A Cell Biosci. 2025; 15(1):30.

PMID: 40025596 PMC: 11871756. DOI: 10.1186/s13578-025-01367-0.


Telomere function and regulation from mouse models to human ageing and disease.

Jones-Weinert C, Mainz L, Karlseder J Nat Rev Mol Cell Biol. 2024; .

PMID: 39614014 DOI: 10.1038/s41580-024-00800-5.


Telomeres: an organized string linking plants and mammals.

Di Pietro E, Burla R, La Torre M, Gonzalez-Garcia M, Dello Ioio R, Saggio I Biol Direct. 2024; 19(1):119.

PMID: 39568075 PMC: 11577926. DOI: 10.1186/s13062-024-00558-y.


Telomere maintenance and the DNA damage response: a paradoxical alliance.

Harman A, Bryan T Front Cell Dev Biol. 2024; 12:1472906.

PMID: 39483338 PMC: 11524846. DOI: 10.3389/fcell.2024.1472906.


Dysfunction of Telomeric Cdc13-Stn1-Ten1 Simultaneously Activates DNA Damage and Spindle Checkpoints.

Grandin N, Charbonneau M Cells. 2024; 13(19.

PMID: 39404369 PMC: 11475793. DOI: 10.3390/cells13191605.


References
1.
Zhao Y, Abreu E, Kim J, Stadler G, Eskiocak U, Terns M . Processive and distributive extension of human telomeres by telomerase under homeostatic and nonequilibrium conditions. Mol Cell. 2011; 42(3):297-307. PMC: 3108241. DOI: 10.1016/j.molcel.2011.03.020. View

2.
Abreu E, Aritonovska E, Reichenbach P, Cristofari G, Culp B, Terns R . TIN2-tethered TPP1 recruits human telomerase to telomeres in vivo. Mol Cell Biol. 2010; 30(12):2971-82. PMC: 2876666. DOI: 10.1128/MCB.00240-10. View

3.
Latrick C, Cech T . POT1-TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. EMBO J. 2010; 29(5):924-33. PMC: 2837173. DOI: 10.1038/emboj.2009.409. View

4.
Pennock E, Buckley K, Lundblad V . Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001; 104(3):387-96. DOI: 10.1016/s0092-8674(01)00226-4. View

5.
Cristofari G, Lingner J . Telomere length homeostasis requires that telomerase levels are limiting. EMBO J. 2006; 25(3):565-74. PMC: 1383536. DOI: 10.1038/sj.emboj.7600952. View