» Articles » PMID: 22737050

Toward Large-scale Computational Fluid-solid-growth Models of Intracranial Aneurysms

Overview
Journal Yale J Biol Med
Specialty Biology
Date 2012 Jun 28
PMID 22737050
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Complementary advances in medical imaging, vascular biology, genetics, biomechanics, and computational methods promise to enable the development of mathematical models of the enlargement and possible rupture of intracranial aneurysms that can help inform clinical decisions. Nevertheless, this ultimate goal is extremely challenging given the many diverse and complex factors that control the natural history of these lesions. As it should be expected, therefore, predictive models continue to develop in stages, with new advances incorporated as data and computational methods permit. In this paper, we submit that large-scale, patient-specific, fluid-solid interaction models of the entire circle of Willis and included intracranial aneurysm are both computationally tractable and necessary as a critical step toward fluid-solid-growth (FSG) models that can address the evolution of a lesion while incorporating information on the genetically and mechanobiologically determined microstructure of the wall.

Citing Articles

Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts.

Tran J, Schiavazzi D, Kahn A, Marsden A Comput Methods Appl Mech Eng. 2019; 345:402-428.

PMID: 31223175 PMC: 6586227. DOI: 10.1016/j.cma.2018.10.024.


Structural modelling of the cardiovascular system.

Owen B, Bojdo N, Jivkov A, Keavney B, Revell A Biomech Model Mechanobiol. 2018; 17(5):1217-1242.

PMID: 29911296 PMC: 6154127. DOI: 10.1007/s10237-018-1024-9.


Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature.

Randles A, Draeger E, Bailey P J Comput Sci. 2017; 9:70-75.

PMID: 29152011 PMC: 5693253. DOI: 10.1016/j.jocs.2015.04.003.


Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts.

Ramachandra A, Kahn A, Marsden A J Cardiovasc Transl Res. 2016; 9(4):279-90.

PMID: 27447176 PMC: 5533611. DOI: 10.1007/s12265-016-9706-0.


Understanding the role of hemodynamics in the initiation, progression, rupture, and treatment outcome of cerebral aneurysm from medical image-based computational studies.

Castro M ISRN Radiol. 2014; 2013:602707.

PMID: 24967285 PMC: 4045510. DOI: 10.5402/2013/602707.


References
1.
Cebral J, Castro M, Putman C, Alperin N . Flow-area relationship in internal carotid and vertebral arteries. Physiol Meas. 2008; 29(5):585-94. PMC: 2692290. DOI: 10.1088/0967-3334/29/5/005. View

2.
Wang K, Dutton R, Taylor C . Improving geometric model construction for blood flow modeling. IEEE Eng Med Biol Mag. 1999; 18(6):33-9. DOI: 10.1109/51.805142. View

3.
Sheidaei A, Hunley S, Zeinali-Davarani S, Raguin L, Baek S . Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys. 2010; 33(1):80-8. DOI: 10.1016/j.medengphy.2010.09.012. View

4.
Anor T, Grinberg L, Baek H, Madsen J, Jayaraman M, Karniadakis G . Modeling of blood flow in arterial trees. Wiley Interdiscip Rev Syst Biol Med. 2010; 2(5):612-623. DOI: 10.1002/wsbm.90. View

5.
Davies P . Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2008; 6(1):16-26. PMC: 2851404. DOI: 10.1038/ncpcardio1397. View