» Articles » PMID: 22728046

Effect of Common Cryoprotectants on Critical Warming Rates and Ice Formation in Aqueous Solutions

Overview
Journal Cryobiology
Publisher Elsevier
Specialty Biology
Date 2012 Jun 26
PMID 22728046
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Ice formation on warming is of comparable or greater importance to ice formation on cooling in determining survival of cryopreserved samples. Critical warming rates required for ice-free warming of vitrified aqueous solutions of glycerol, dimethyl sulfoxide, ethylene glycol, polyethylene glycol 200 and sucrose have been measured for warming rates of order 10-10⁴ K/s. Critical warming rates are typically one to three orders of magnitude larger than critical cooling rates. Warming rates vary strongly with cooling rates, perhaps due to the presence of small ice fractions in nominally vitrified samples. Critical warming and cooling rate data spanning orders of magnitude in rates provide rigorous tests of ice nucleation and growth models and their assumed input parameters. Current models with current best estimates for input parameters provide a reasonable account of critical warming rates for glycerol solutions at high concentrations/low rates, but overestimate both critical warming and cooling rates by orders of magnitude at lower concentrations and larger rates. In vitrification protocols, minimizing concentrations of potentially damaging cryoprotectants while minimizing ice formation will require ultrafast warming rates, as well as fast cooling rates to minimize the required warming rates.

Citing Articles

Advances in magnetic nanoparticles for molecular medicine.

Yang X, Kubican S, Yi Z, Tong S Chem Commun (Camb). 2025; 61(15):3093-3108.

PMID: 39846549 PMC: 11756346. DOI: 10.1039/d4cc05167j.


Ice formation and its elimination in cryopreservation of oocytes.

Abdelhady A, Mittan-Moreau D, Crane P, McLeod M, Cheong S, Thorne R Sci Rep. 2024; 14(1):18809.

PMID: 39138273 PMC: 11322307. DOI: 10.1038/s41598-024-69528-8.


Parallelized Droplet Vitrification Enables Single-Run Vitrification of the Whole Rat Liver Hepatocyte Yield.

Taggart M, Tchir A, Van Dieren L, Chen H, Hassan M, Taveras C bioRxiv. 2024; .

PMID: 39071342 PMC: 11275928. DOI: 10.1101/2024.07.14.603471.


Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs.

Janssen J, Chirico N, Ainsworth M, Cedillo-Servin G, Viola M, Dokter I Biomater Sci. 2024; 12(15):3866-3881.

PMID: 38910521 PMC: 11265564. DOI: 10.1039/d3bm01908j.


Ice formation and its elimination in cryopreservation of oocytes.

Abdelhady A, Mittan-Moreau D, Crane P, McLeod M, Cheong S, Thorne R Res Sq. 2024; .

PMID: 38826214 PMC: 11142364. DOI: 10.21203/rs.3.rs-4144933/v1.


References
1.
Boutron P, Mehl P, Kaufmann A, Angibaud P . Glass-forming tendency and stability of the amorphous state in the aqueous solutions of linear polyalcohols with four carbons. I. Binary systems water-polyalcohol. Cryobiology. 1986; 23(5):453-69. DOI: 10.1016/0011-2240(86)90031-3. View

2.
Wowk , Darwin , Harris , Russell , Rasch . Effects of solute methoxylation on glass-forming ability and stability of vitrification solutions. Cryobiology. 1999; 39(3):215-27. DOI: 10.1006/cryo.1999.2203. View

3.
Warkentin M, Stanislavskaia V, Hammes K, Thorne R . Cryocrystallography in capillaries: critical glycerol concentrations and cooling rates. J Appl Crystallogr. 2009; 41(Pt 4):791-797. PMC: 2648606. DOI: 10.1107/S0021889808018451. View

4.
Franks F, Mathias S, Galfre P, Webster S, Brown D . Ice nucleation and freezing in undercooled cells. Cryobiology. 1983; 20(3):298-309. DOI: 10.1016/0011-2240(83)90018-4. View

5.
BAUDOT , Peyridieu , BOUTRON , Mazuer , Odin . Effect of Saccharides on the Glass-Forming Tendency and Stability of Solutions of 2,3-Butanediol, 1,2-Propanediol, or 1,3-Butanediol in Water, Phosphate-Buffered Saline, Euro-Collins Solution, or Saint Thomas Cardioplegic Solution. Cryobiology. 1996; 33(3):363-75. DOI: 10.1006/cryo.1996.0037. View