Meng J, Wei Y, Mai X, Li S, Wang X, Luo R
Med Biol Eng Comput. 2025; .
PMID: 40059266
DOI: 10.1007/s11517-025-03340-y.
Escamilla-Ruiz M, Zarzoza-Medina M, Rios-Ramirez M, Hernandez-Adame P, Ruiz-Garcia J
ACS Omega. 2025; 10(5):4224-4232.
PMID: 39959046
PMC: 11822483.
DOI: 10.1021/acsomega.4c03100.
Zhang X, Zhang T, Jiang Y, Zhang W, Lu Z, Wang Y
Heliyon. 2024; 10(5):e26521.
PMID: 38463871
PMC: 10920167.
DOI: 10.1016/j.heliyon.2024.e26521.
Kwon J, Hwang J, Nam H, Im C
Front Neuroinform. 2022; 16:997068.
PMID: 36213545
PMC: 9534124.
DOI: 10.3389/fninf.2022.997068.
Zhang X, Jiang Y, Hou W, Jiang N
Front Aging Neurosci. 2022; 14:1004188.
PMID: 36158550
PMC: 9493465.
DOI: 10.3389/fnagi.2022.1004188.
Effects of Low Mental Energy from Long Periods of Work on Brain-Computer Interfaces.
Liu K, Yu Y, Zeng L, Liang X, Liu Y, Chu X
Brain Sci. 2022; 12(9).
PMID: 36138888
PMC: 9497083.
DOI: 10.3390/brainsci12091152.
A novel multiple time-frequency sequential coding strategy for hybrid brain-computer interface.
Yue Z, Wu Q, Ren S, Li M, Shi B, Pan Y
Front Hum Neurosci. 2022; 16:859259.
PMID: 35966991
PMC: 9372511.
DOI: 10.3389/fnhum.2022.859259.
DF-SSmVEP: Dual Frequency Aggregated Steady-State Motion Visual Evoked Potential Design with Bifold Canonical Correlation Analysis.
Karimi R, Mohammadi A, Asif A, Benali H
Sensors (Basel). 2022; 22(7).
PMID: 35408182
PMC: 9003394.
DOI: 10.3390/s22072568.
Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial.
Zhao C, Ju F, Sun W, Jiang S, Xi X, Wang H
Neurol Ther. 2022; 11(2):679-695.
PMID: 35174449
PMC: 9095806.
DOI: 10.1007/s40120-022-00333-z.
Assessing the Effect of the Refresh Rate of a Device on Various Motion Stimulation Frequencies Based on Steady-State Motion Visual Evoked Potentials.
Han C, Xu G, Zheng X, Tian P, Zhang K, Yan W
Front Neurosci. 2022; 15:757679.
PMID: 35069096
PMC: 8777290.
DOI: 10.3389/fnins.2021.757679.
Enhancing Detection of SSMVEP Induced by Action Observation Stimuli Based on Task-Related Component Analysis.
Zhang X, Hou W, Wu X, Chen L, Jiang N
Sensors (Basel). 2021; 21(16).
PMID: 34450713
PMC: 8400839.
DOI: 10.3390/s21165269.
Complex networks and deep learning for EEG signal analysis.
Gao Z, Dang W, Wang X, Hong X, Hou L, Ma K
Cogn Neurodyn. 2021; 15(3):369-388.
PMID: 34040666
PMC: 8131466.
DOI: 10.1007/s11571-020-09626-1.
Auditory Noise Leads to Increased Visual Brain-Computer Interface Performance: A Cross-Modal Study.
Xie J, Cao G, Xu G, Fang P, Cui G, Xiao Y
Front Neurosci. 2021; 14:590963.
PMID: 33414701
PMC: 7783197.
DOI: 10.3389/fnins.2020.590963.
Toward New Modalities in VEP-Based BCI Applications Using Dynamical Stimuli: Introducing Quasi-Periodic and Chaotic VEP-Based BCI.
Shirzhiyan Z, Keihani A, Farahi M, Shamsi E, Golmohammadi M, Mahnam A
Front Neurosci. 2020; 14:534619.
PMID: 33328841
PMC: 7718037.
DOI: 10.3389/fnins.2020.534619.
Comparison of Modern Highly Interactive Flicker-Free Steady State Motion Visual Evoked Potentials for Practical Brain-Computer Interfaces.
Stawicki P, Volosyak I
Brain Sci. 2020; 10(10).
PMID: 32998379
PMC: 7601073.
DOI: 10.3390/brainsci10100686.
Anti-fatigue Performance in SSVEP-Based Visual Acuity Assessment: A Comparison of Six Stimulus Paradigms.
Zheng X, Xu G, Zhang Y, Liang R, Zhang K, Du Y
Front Hum Neurosci. 2020; 14:301.
PMID: 32848675
PMC: 7412756.
DOI: 10.3389/fnhum.2020.00301.
Performance Evaluation of Visual Noise Imposed Stochastic Resonance Effect on Brain-Computer Interface Application: A Comparison Between Motion-Reversing Simple Ring and Complex Checkerboard Patterns.
Xie J, Du G, Xu G, Zhao X, Fang P, Li M
Front Neurosci. 2019; 13:1192.
PMID: 31787871
PMC: 6856080.
DOI: 10.3389/fnins.2019.01192.
Comparison of Visual Stimuli for Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces in Virtual Reality Environment in terms of Classification Accuracy and Visual Comfort.
Choi K, Park S, Im C
Comput Intell Neurosci. 2019; 2019:9680697.
PMID: 31354804
PMC: 6636533.
DOI: 10.1155/2019/9680697.
Objective and quantitative assessment of visual acuity and contrast sensitivity based on steady-state motion visual evoked potentials using concentric-ring paradigm.
Zheng X, Xu G, Wang Y, Han C, Du C, Yan W
Doc Ophthalmol. 2019; 139(2):123-136.
PMID: 31214918
DOI: 10.1007/s10633-019-09702-w.
A Radial Zoom Motion-Based Paradigm for Steady State Motion Visual Evoked Potentials.
Chai X, Zhang Z, Guan K, Liu G, Niu H
Front Hum Neurosci. 2019; 13:127.
PMID: 31040775
PMC: 6477057.
DOI: 10.3389/fnhum.2019.00127.