» Articles » PMID: 22718981

Structural Flexibility of RNA As Molecular Basis for Hfq Chaperone Function

Abstract

In enteric bacteria, many small regulatory RNAs (sRNAs) associate with the RNA chaperone host factor Q (Hfq) and often require the protein for regulation of target mRNAs. Previous studies suggested that the hexameric Escherichia coli Hfq (Hfq(Ec)) binds sRNAs on the proximal site, whereas the distal site has been implicated in Hfq-mRNA interactions. Employing a combination of small angle X-ray scattering, nuclear magnetic resonance and biochemical approaches, we report the structural analysis of a 1:1 complex of Hfq(Ec) with a 34-nt-long subsequence of a natural substrate sRNA, DsrA (DsrA(34)). This sRNA is involved in post-transcriptional regulation of the E. coli rpoS mRNA encoding the stationary phase sigma factor RpoS. The molecular envelopes of Hfq(Ec) in complex with DsrA(34) revealed an overall asymmetric shape of the complex in solution with the protein maintaining its doughnut-like structure, whereas the extended DsrA(34) is flexible and displays an ensemble of different spatial arrangements. These results are discussed in terms of a model, wherein the structural flexibility of RNA ligands bound to Hfq stochastically facilitates base pairing and provides the foundation for the RNA chaperone function inherent to Hfq.

Citing Articles

Specific and Global RNA Regulators in .

Pusic P, Sonnleitner E, Blasi U Int J Mol Sci. 2021; 22(16).

PMID: 34445336 PMC: 8395346. DOI: 10.3390/ijms22168632.


Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation.

Hoekzema M, Romilly C, Holmqvist E, Wagner E EMBO J. 2019; 38(7).

PMID: 30833291 PMC: 6443205. DOI: 10.15252/embj.2018101199.


Proteins That Chaperone RNA Regulation.

Woodson S, Panja S, Santiago-Frangos A Microbiol Spectr. 2018; 6(4).

PMID: 30051798 PMC: 6086601. DOI: 10.1128/microbiolspec.RWR-0026-2018.


The important conformational plasticity of DsrA sRNA for adapting multiple target regulation.

Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J Nucleic Acids Res. 2017; 45(16):9625-9639.

PMID: 28934467 PMC: 5766208. DOI: 10.1093/nar/gkx570.


Intermolecular base stacking mediates RNA-RNA interaction in a crystal structure of the RNA chaperone Hfq.

Schulz E, Seiler M, Zuliani C, Voigt F, Rybin V, Pogenberg V Sci Rep. 2017; 7(1):9903.

PMID: 28852099 PMC: 5575007. DOI: 10.1038/s41598-017-10085-8.


References
1.
Soper T, Doxzen K, Woodson S . Major role for mRNA binding and restructuring in sRNA recruitment by Hfq. RNA. 2011; 17(8):1544-50. PMC: 3153977. DOI: 10.1261/rna.2767211. View

2.
Otaka H, Ishikawa H, Morita T, Aiba H . PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A. 2011; 108(32):13059-64. PMC: 3156202. DOI: 10.1073/pnas.1107050108. View

3.
Jousselin A, Metzinger L, Felden B . On the facultative requirement of the bacterial RNA chaperone, Hfq. Trends Microbiol. 2009; 17(9):399-405. DOI: 10.1016/j.tim.2009.06.003. View

4.
Farrow N, Zhang O, Szabo A, Torchia D, Kay L . Spectral density function mapping using 15N relaxation data exclusively. J Biomol NMR. 1995; 6(2):153-62. DOI: 10.1007/BF00211779. View

5.
Schumacher M, Pearson R, Moller T, Valentin-Hansen P, Brennan R . Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J. 2002; 21(13):3546-56. PMC: 126077. DOI: 10.1093/emboj/cdf322. View