» Articles » PMID: 22715098

Structure of P22 Headful Packaging Nuclease

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Jun 21
PMID 22715098
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

Packaging of viral genomes into preformed procapsids requires the controlled and synchronized activity of an ATPase and a genome-processing nuclease, both located in the large terminase (L-terminase) subunit. In this paper, we have characterized the structure and regulation of bacteriophage P22 L-terminase (gp2). Limited proteolysis reveals a bipartite organization consisting of an N-terminal ATPase core flexibly connected to a C-terminal nuclease domain. The 2.02 Å crystal structure of P22 headful nuclease obtained by in-drop proteolysis of full-length L-terminase (FL-L-terminase) reveals a central seven-stranded β-sheet core that harbors two magnesium ions. Modeling studies with DNA suggest that the two ions are poised for two-metal ion-dependent catalysis, but the nuclease DNA binding surface is sterically hindered by a loop-helix (L(1)-α(2)) motif, which is incompatible with catalysis. Accordingly, the isolated nuclease is completely inactive in vitro, whereas it exhibits endonucleolytic activity in the context of FL-L-terminase. Deleting the autoinhibitory L(1)-α(2) motif (or just the loop L(1)) restores nuclease activity to a level comparable with FL-L-terminase. Together, these results suggest that the activity of P22 headful nuclease is regulated by intramolecular cross-talk with the N-terminal ATPase domain. This cross-talk allows for precise and controlled cleavage of DNA that is essential for genome packaging.

Citing Articles

Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution.

Cabral J, Qiu Y, Heck A, McNulty R Pathogens. 2025; 13(12.

PMID: 39770326 PMC: 11728703. DOI: 10.3390/pathogens13121066.


Origin, Evolution and Diversity of φ29-like Phages-Review and Bioinformatic Analysis.

Evseev P, Gutnik D, Evpak A, Kasimova A, Miroshnikov K Int J Mol Sci. 2024; 25(19).

PMID: 39409167 PMC: 11476376. DOI: 10.3390/ijms251910838.


Viral Genomic DNA Packaging Machinery.

Hawkins D, Godwin O, Antson A Subcell Biochem. 2024; 104:181-205.

PMID: 38963488 DOI: 10.1007/978-3-031-58843-3_9.


Molecular Architecture of Salmonella Typhimurium Virus P22 Genome Ejection Machinery.

Iglesias S, Lokareddy R, Yang R, Li F, Yeggoni D, Hou C J Mol Biol. 2023; 435(24):168365.

PMID: 37952769 PMC: 10842050. DOI: 10.1016/j.jmb.2023.168365.


Insights into a viral motor: the structure of the HK97 packaging termination assembly.

Hawkins D, Bayfield O, Fung H, Grba D, Huet A, Conway J Nucleic Acids Res. 2023; 51(13):7025-7035.

PMID: 37293963 PMC: 10359639. DOI: 10.1093/nar/gkad480.


References
1.
Lupas A, Van Dyke M, Stock J . Predicting coiled coils from protein sequences. Science. 1991; 252(5009):1162-4. DOI: 10.1126/science.252.5009.1162. View

2.
Kanamaru S, Kondabagil K, Rossmann M, Rao V . The functional domains of bacteriophage t4 terminase. J Biol Chem. 2004; 279(39):40795-801. DOI: 10.1074/jbc.M403647200. View

3.
Fuller D, Raymer D, Kottadiel V, Rao V, Smith D . Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability. Proc Natl Acad Sci U S A. 2007; 104(43):16868-73. PMC: 2040459. DOI: 10.1073/pnas.0704008104. View

4.
Nemecek D, Lander G, Johnson J, Casjens S, Thomas Jr G . Assembly architecture and DNA binding of the bacteriophage P22 terminase small subunit. J Mol Biol. 2008; 383(3):494-501. PMC: 2577774. DOI: 10.1016/j.jmb.2008.08.050. View

5.
Moore S, Prevelige Jr P . Bacteriophage p22 portal vertex formation in vivo. J Mol Biol. 2002; 315(5):975-94. DOI: 10.1006/jmbi.2001.5275. View