» Articles » PMID: 22711131

DNA Assembler Method for Construction of Zeaxanthin-producing Strains of Saccharomyces Cerevisiae

Overview
Specialty Molecular Biology
Date 2012 Jun 20
PMID 22711131
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

DNA assembler enables design and rapid construction of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use the zeaxanthin biosynthetic pathway as an example to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for the construction of the clones, S. cerevisiae transformation, and zeaxanthin production and detection are shown.

Citing Articles

CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters.

He F, Liu X, Tang M, Wang H, Wu Y, Liang S Nucleic Acids Res. 2024; 52(18):11378-11393.

PMID: 39271125 PMC: 11472037. DOI: 10.1093/nar/gkae781.


Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production.

Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z Nat Commun. 2023; 14(1):7797.

PMID: 38016984 PMC: 10684500. DOI: 10.1038/s41467-023-43049-w.


Metabolic engineering of low-pH-tolerant non-model yeast, , for production of citramalate.

Wu Z, Sun W, Shen Y, Pratas J, Suthers P, Hsieh P Metab Eng Commun. 2023; 16:e00220.

PMID: 36860699 PMC: 9969067. DOI: 10.1016/j.mec.2023.e00220.


as Microbial Chassis for Heterologous Protein Expression.

Hwang S, Lee Y, Kim J, Kim G, Kim H, Kim W Front Bioeng Biotechnol. 2022; 9:804295.

PMID: 34993191 PMC: 8724576. DOI: 10.3389/fbioe.2021.804295.


Metabolic engineering of an acid-tolerant yeast strain for itaconic acid production.

Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria N Metab Eng Commun. 2020; 10:e00124.

PMID: 32346511 PMC: 7178482. DOI: 10.1016/j.mec.2020.e00124.


References
1.
Hjersted J, Henson M, Mahadevan R . Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng. 2007; 97(5):1190-204. DOI: 10.1002/bit.21332. View

2.
Szczebara F, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C . Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol. 2003; 21(2):143-9. DOI: 10.1038/nbt775. View

3.
Chemler J, Yan Y, Koffas M . Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microb Cell Fact. 2006; 5:20. PMC: 1533850. DOI: 10.1186/1475-2859-5-20. View

4.
Misawa N, Nakagawa M, Kobayashi K, Yamano S, Izawa Y, Nakamura K . Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J Bacteriol. 1990; 172(12):6704-12. PMC: 210783. DOI: 10.1128/jb.172.12.6704-6712.1990. View

5.
Gunyuzlu P, Hollis G, Toyn J . Plasmid construction by linker-assisted homologous recombination in yeast. Biotechniques. 2002; 31(6):1246, 1248, 1250. DOI: 10.2144/01316bm03. View