DNA Assembler Method for Construction of Zeaxanthin-producing Strains of Saccharomyces Cerevisiae
Overview
Authors
Affiliations
DNA assembler enables design and rapid construction of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use the zeaxanthin biosynthetic pathway as an example to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for the construction of the clones, S. cerevisiae transformation, and zeaxanthin production and detection are shown.
CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters.
He F, Liu X, Tang M, Wang H, Wu Y, Liang S Nucleic Acids Res. 2024; 52(18):11378-11393.
PMID: 39271125 PMC: 11472037. DOI: 10.1093/nar/gkae781.
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z Nat Commun. 2023; 14(1):7797.
PMID: 38016984 PMC: 10684500. DOI: 10.1038/s41467-023-43049-w.
Metabolic engineering of low-pH-tolerant non-model yeast, , for production of citramalate.
Wu Z, Sun W, Shen Y, Pratas J, Suthers P, Hsieh P Metab Eng Commun. 2023; 16:e00220.
PMID: 36860699 PMC: 9969067. DOI: 10.1016/j.mec.2023.e00220.
as Microbial Chassis for Heterologous Protein Expression.
Hwang S, Lee Y, Kim J, Kim G, Kim H, Kim W Front Bioeng Biotechnol. 2022; 9:804295.
PMID: 34993191 PMC: 8724576. DOI: 10.3389/fbioe.2021.804295.
Metabolic engineering of an acid-tolerant yeast strain for itaconic acid production.
Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria N Metab Eng Commun. 2020; 10:e00124.
PMID: 32346511 PMC: 7178482. DOI: 10.1016/j.mec.2020.e00124.