» Articles » PMID: 22710192

Effects of Ethanol Metabolites on Exocytosis of Pancreatic Acinar Cells in Rats

Overview
Specialty Gastroenterology
Date 2012 Jun 20
PMID 22710192
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Background & Aims: During development of alcoholic pancreatitis, oxidative (acetaldehyde) and nonoxidative metabolites (ethyl palmitate, ethyl oleate), rather than ethanol itself, mediate toxic injury. Exposure of pancreatic acini to ethanol blocks cholecystokinin (CCK)-8-stimulated apical exocytosis and redirects exocytosis to the basolateral plasma membrane, causing interstitial pancreatitis. We examined how each ethanol metabolite contributes to these changes in exocytosis.

Methods: Rat pancreatic acini were incubated with concentrations of ethanol associated with alcoholic pancreatitis (20-50 mmol/L) or ethanol metabolites (1-3 mmol/L) and then stimulated with CCK-8. We performed single zymogen granule (ZG) exocytosis assays, Ca(2+) imaging studies, ultrastructural analyses (with electron microscopy), and confocal microscopy to assess the actin cytoskeleton and track the movement of vesicle-associated membrane protein (VAMP)-8-containing ZGs. Coimmunoprecipitation assays were used to identify complexes that contain the distinct combinations of Munc18 and the soluble N-ethylmaleimide sensitive factor attachment protein receptor proteins, which mediate apical (ZG-apical plasma membrane) and basolateral exocytosis and fusion between ZGs (ZG-ZG).

Results: The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate reduced CCK-8-stimulated apical exocytosis and formation of apical exocytotic complexes (between Munc18b and Syntaxin-2, synaptosomal-associated protein of 23 kilodaltons [SNAP23], and VAMP2) in rat pancreatic acini. Acetaldehyde and ethyl oleate redirected CCK-8-stimulated exocytosis to the basal and lateral plasma membranes and translocation of VAMP8-containing ZGs toward the basolateral plasma membrane. This process was mediated primarily via formation of basolateral exocytotic complexes (between Munc18c and Syntaxin-4, SNAP23, and VAMP8). Exposure of the acini to acetaldehyde and ethyl oleate followed by CCK-8 stimulation mildly perturbed the actin cytoskeleton and Ca(2+) signaling; exposure to ethyl palmitate severely affected Ca(2+) signaling. Acetaldehyde, like ethanol, promoted fusion between ZGs by the formation of ZG-ZG exocytotic complexes (between Munc18b and Syntaxin-3, SNAP23, and VAMP8), whereas ethyl palmitate and ethyl oleate reduced ZG-ZG fusion and formation of these complexes.

Conclusions: The ethanol metabolites acetaldehyde, ethyl palmitate, and ethyl oleate perturb exocytosis processes in cultured rat pancreatic acini (apical blockade, basolateral exocytosis, and fusion between ZGs). Acetaldehyde and, to a lesser degree, ethyl oleate produce many of the same pathologic effects of ethanol on CCK-8-stimulated exocytosis in pancreatic acini.

Citing Articles

Unveiling the Emerging Role of Xanthine Oxidase in Acute Pancreatitis: Beyond Reactive Oxygen Species.

Han C, Wu Y, Rong J, Xia Q, Du D Antioxidants (Basel). 2025; 14(1).

PMID: 39857429 PMC: 11759826. DOI: 10.3390/antiox14010095.


Activation and Regulation of Pancreatic Stellate Cells in Chronic Pancreatic Fibrosis: A Potential Therapeutic Approach for Chronic Pancreatitis.

Kong F, Pan Y, Wu D Biomedicines. 2024; 12(1).

PMID: 38255213 PMC: 10813475. DOI: 10.3390/biomedicines12010108.


SNARE Proteins Mediate α-Synuclein Secretion via Multiple Vesicular Pathways.

Zhao X, Guan Y, Liu F, Yan S, Wang Y, Hu M Mol Neurobiol. 2021; 59(1):405-419.

PMID: 34705229 DOI: 10.1007/s12035-021-02599-0.


Differential cytotoxicity, ER/oxidative stress, dysregulated AMPKα signaling, and mitochondrial stress by ethanol and its metabolites in human pancreatic acinar cells.

Srinivasan M, Bhopale K, Caracheo A, Kaphalia L, Loganathan G, Balamurugan A Alcohol Clin Exp Res. 2021; 45(5):961-978.

PMID: 33690904 PMC: 8544284. DOI: 10.1111/acer.14595.


Activation of AMP-activated protein kinase attenuates ethanol-induced ER/oxidative stress and lipid phenotype in human pancreatic acinar cells.

Srinivasan M, Bhopale K, Caracheo A, Amer S, Khan S, Kaphalia L Biochem Pharmacol. 2020; 180:114174.

PMID: 32717227 PMC: 7651864. DOI: 10.1016/j.bcp.2020.114174.