Qiu S, Guo W, Zha F, Deng J, Wang X
Front Neurorobot. 2021; 15:672582.
PMID: 34093160
PMC: 8173117.
DOI: 10.3389/fnbot.2021.672582.
Hobbs B, Artemiadis P
Front Neurorobot. 2020; 14:19.
PMID: 32351377
PMC: 7174593.
DOI: 10.3389/fnbot.2020.00019.
Muijzer-Witteveen H, Sibum N, van Dijsseldonk R, Keijsers N, van Asseldonk E
J Neuroeng Rehabil. 2018; 15(1):112.
PMID: 30470238
PMC: 6260663.
DOI: 10.1186/s12984-018-0445-0.
Juszczak M, Gallo E, Bushnik T
Top Spinal Cord Inj Rehabil. 2018; 24(4):336-342.
PMID: 30459496
PMC: 6241230.
DOI: 10.1310/sci17-00055.
Ekelem A, Goldfarb M
Front Neurosci. 2018; 12:374.
PMID: 29910710
PMC: 5992413.
DOI: 10.3389/fnins.2018.00374.
Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
Tefertiller C, Hays K, Jones J, Jayaraman A, Hartigan C, Bushnik T
Top Spinal Cord Inj Rehabil. 2018; 24(1):78-85.
PMID: 29434463
PMC: 5791927.
DOI: 10.1310/sci17-00014.
Towards Total Energy Shaping Control of Lower-Limb Exoskeletons.
Lv G, Gregg R
Proc Am Control Conf. 2017; 2017:4851-4857.
PMID: 29104363
PMC: 5667924.
DOI: 10.23919/ACC.2017.7963706.
Feasibility of a Hydraulic Power Assist System for Use in Hybrid Neuroprostheses.
Foglyano K, Kobetic R, To C, Bulea T, Schnellenberger J, Audu M
Appl Bionics Biomech. 2016; 2015:205104.
PMID: 27017963
PMC: 4745429.
DOI: 10.1155/2015/205104.
Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S
Top Spinal Cord Inj Rehabil. 2015; 21(2):93-9.
PMID: 26364278
PMC: 4568090.
DOI: 10.1310/sci2102-93.
Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review.
Wall A, Borg J, Palmcrantz S
Front Syst Neurosci. 2015; 9:48.
PMID: 25859191
PMC: 4373251.
DOI: 10.3389/fnsys.2015.00048.
An assistive controller for a lower-limb exoskeleton for rehabilitation after stroke, and preliminary assessment thereof.
Murray S, Ha K, Goldfarb M
Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2014:4083-6.
PMID: 25570889
PMC: 4479172.
DOI: 10.1109/EMBC.2014.6944521.
Control strategies for active lower extremity prosthetics and orthotics: a review.
Tucker M, Olivier J, Pagel A, Bleuler H, Bouri M, Lambercy O
J Neuroeng Rehabil. 2015; 12:1.
PMID: 25557982
PMC: 4326520.
DOI: 10.1186/1743-0003-12-1.
A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia.
Farris R, Quintero H, Murray S, Ha K, Hartigan C, Goldfarb M
IEEE Trans Neural Syst Rehabil Eng. 2013; 22(3):482-90.
PMID: 23797285
PMC: 4476394.
DOI: 10.1109/TNSRE.2013.2268320.
Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review.
Zhang M, Davies T, Xie S
J Neuroeng Rehabil. 2013; 10:30.
PMID: 23517734
PMC: 3636117.
DOI: 10.1186/1743-0003-10-30.
Preliminary assessment of the efficacy of supplementing knee extension capability in a lower limb exoskeleton with FES.
Quintero H, Farris R, Ha K, Goldfarb M
Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2012:3360-3.
PMID: 23366646
PMC: 3688042.
DOI: 10.1109/EMBC.2012.6346685.
Towards the use of a lower limb exoskeleton for locomotion assistance in individuals with neuromuscular locomotor deficits.
Murray S, Goldfarb M
Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2012:1912-5.
PMID: 23366288
PMC: 3688043.
DOI: 10.1109/EMBC.2012.6346327.