Phosphorylated and Sumoylation-deficient Progesterone Receptors Drive Proliferative Gene Signatures During Breast Cancer Progression
Overview
Authors
Affiliations
Introduction: Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression.
Methods: Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature.
Results: 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells.
Conclusions: We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
Saunders H, Holloran S, Trinca G, Artigues A, Villar M, Tinoco J J Biol Chem. 2024; 300(11):107886.
PMID: 39395796 PMC: 11609360. DOI: 10.1016/j.jbc.2024.107886.
Sereda E, Kolegova E, Kakurina G, Korshunov D, Sidenko E, Doroshenko A Transl Breast Cancer Res. 2024; 3:23.
PMID: 38751528 PMC: 11093047. DOI: 10.21037/tbcr-22-22.
Mechanosensitive hormone signaling promotes mammary progenitor expansion and breast cancer risk.
Northey J, Hayward M, Yui Y, Stashko C, Kai F, Mouw J Cell Stem Cell. 2024; 31(1):106-126.e13.
PMID: 38181747 PMC: 11050720. DOI: 10.1016/j.stem.2023.12.002.
Burris T, de Vera I, Cote I, Flaveny C, Wanninayake U, Chatterjee A Pharmacol Rev. 2023; 75(6):1233-1318.
PMID: 37586884 PMC: 10595025. DOI: 10.1124/pharmrev.121.000436.
FGF7/FGFR2-JunB signalling counteracts the effect of progesterone in luminal breast cancer.
Mieczkowski K, Kitowska K, Braun M, Galikowska-Bogut B, Gorska-Arcisz M, Piasecka D Mol Oncol. 2022; 16(15):2823-2842.
PMID: 35726195 PMC: 9348598. DOI: 10.1002/1878-0261.13274.