Zhang J, Li J, Wang H, Wang M
Front Chem. 2023; 11:1253959.
PMID: 37780988
PMC: 10536326.
DOI: 10.3389/fchem.2023.1253959.
Sun F, Ma Q, Kong M, Zhou X, Liu Y, Zhou B
RSC Adv. 2022; 8(64):36826-36830.
PMID: 35558929
PMC: 9088933.
DOI: 10.1039/c8ra07567k.
Liu J, Zhang C, Xu L, Ju S
RSC Adv. 2022; 8(32):17773-17785.
PMID: 35542083
PMC: 9080496.
DOI: 10.1039/c8ra01942h.
Wei H, Sun J, Hu Y, Li Z, Ai M
RSC Adv. 2022; 9(56):32608-32619.
PMID: 35529767
PMC: 9073181.
DOI: 10.1039/c9ra06059f.
Rehman R, Peng J, Yi H, Shen Y, Yin J, Li C
RSC Adv. 2022; 10(45):27033-27041.
PMID: 35515809
PMC: 9055524.
DOI: 10.1039/d0ra03490h.
Electrochemical Na-Insertion/Extraction Property of Ni-Coated Black Phosphorus Prepared by an Electroless Deposition Method.
Shimizu M, Tsushima Y, Arai S
ACS Omega. 2019; 2(8):4306-4315.
PMID: 31457722
PMC: 6641880.
DOI: 10.1021/acsomega.7b00950.
Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries.
Wang K, Jin Y, Sun S, Huang Y, Peng J, Luo J
ACS Omega. 2019; 2(4):1687-1695.
PMID: 31457533
PMC: 6641066.
DOI: 10.1021/acsomega.7b00259.
Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix.
Nagulapati V, Kim D, Oh J, Lee J, Hur J, Kim I
Nanomaterials (Basel). 2019; 9(8).
PMID: 31394728
PMC: 6723861.
DOI: 10.3390/nano9081134.
Tin-Decorated Reduced Graphene Oxide and NaLiNiMnO as Electrode Materials for Sodium-Ion Batteries.
Prosini P, Carewska M, Cento C, Tarquini G, Maroni F, Birrozzi A
Materials (Basel). 2019; 12(7).
PMID: 30939841
PMC: 6479771.
DOI: 10.3390/ma12071074.
Prussian Blue Analogs for Rechargeable Batteries.
Wang B, Han Y, Wang X, Bahlawane N, Pan H, Yan M
iScience. 2018; 3:110-133.
PMID: 30428315
PMC: 6137327.
DOI: 10.1016/j.isci.2018.04.008.
First-Principles Study of Sodium Intercalation in Crystalline Na Si (0 ≤ x ≤ 4) as Anode Material for Na-ion Batteries.
Arrieta U, Katcho N, Arcelus O, Carrasco J
Sci Rep. 2017; 7(1):5350.
PMID: 28706264
PMC: 5509687.
DOI: 10.1038/s41598-017-05629-x.
Air-Stable Copper-Based P2-NaCuFeMnO as a New Positive Electrode Material for Sodium-Ion Batteries.
Li Y, Yang Z, Xu S, Mu L, Gu L, Hu Y
Adv Sci (Weinh). 2016; 2(6):1500031.
PMID: 27980950
PMC: 5115408.
DOI: 10.1002/advs.201500031.
A Safer Sodium-Ion Battery Based on Nonflammable Organic Phosphate Electrolyte.
Zeng Z, Jiang X, Li R, Yuan D, Ai X, Yang H
Adv Sci (Weinh). 2016; 3(9):1600066.
PMID: 27711263
PMC: 5039966.
DOI: 10.1002/advs.201600066.
Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy.
Allan P, Griffin J, Darwiche A, Borkiewicz O, Wiaderek K, Chapman K
J Am Chem Soc. 2016; 138(7):2352-65.
PMID: 26824406
PMC: 4819537.
DOI: 10.1021/jacs.5b13273.
Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries.
Wang Y, Yang J, Chou S, Liu H, Zhang W, Zhao D
Nat Commun. 2015; 6:8689.
PMID: 26507613
PMC: 4846313.
DOI: 10.1038/ncomms9689.
Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries.
Xiong X, Luo W, Hu X, Chen C, Qie L, Hou D
Sci Rep. 2015; 5:9254.
PMID: 25806866
PMC: 5380159.
DOI: 10.1038/srep09254.
A low cost, all-organic Na-ion battery based on polymeric cathode and anode.
Deng W, Liang X, Wu X, Qian J, Cao Y, Ai X
Sci Rep. 2013; 3:2671.
PMID: 24036973
PMC: 3773616.
DOI: 10.1038/srep02671.
Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries.
Sun Y, Zhao L, Pan H, Lu X, Gu L, Hu Y
Nat Commun. 2013; 4:1870.
PMID: 23695664
DOI: 10.1038/ncomms2878.