» Articles » PMID: 22674461

MicroRNAs As Novel Regulators of Stem Cell Pluripotency and Somatic Cell Reprogramming

Overview
Journal Bioessays
Publisher Wiley
Date 2012 Jun 8
PMID 22674461
Citations 38
Authors
Affiliations
Soon will be listed here.
Abstract

Emerging evidence suggests that microRNA (miRNA)-mediated post-transcriptional gene regulation plays an essential role in modulating embryonic stem (ES) cell pluripotency maintenance, differentiation, and reprogramming of somatic cells to an ES cell-like state. Investigations from ES cell-enriched miRNAs, such as mouse miR-290 cluster and human miR-302 cluster, and ES cell-depleted miRNAs such as let-7 family miRNAs, revealed a common theme that miRNAs target diverse cellular processes including cell cycle regulators, signaling pathway effectors, transcription factors, and epigenetic modifiers and shape their protein output. The combinatorial effects downstream of miRNA action allow miRNAs to modulate cell-fate decisions effectively. Furthermore, the transcription and biogenesis of miRNAs are also tightly regulated. Thus, elucidating the interplay between miRNAs and other modes of gene regulation will shed new light on the biology of pluripotent stem cells and somatic cell reprogramming.

Citing Articles

Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility.

Doghish A, Elsakka E, Ahmed Mohamed Moustafa H, Ashraf A, Mageed S, Mohammed O Naunyn Schmiedebergs Arch Pharmacol. 2024; .

PMID: 39535597 DOI: 10.1007/s00210-024-03594-7.


MiR-290 Family Maintains Pluripotency and Self-Renewal by Regulating MAPK Signaling Pathway in Intermediate Pluripotent Stem Cells.

Liu Y, Li X, Ma X, Du Q, Wang J, Yu H Int J Mol Sci. 2024; 25(5).

PMID: 38473927 PMC: 10931995. DOI: 10.3390/ijms25052681.


Oncomeric Profiles of microRNAs as New Therapeutic Targets for Treatment of Ewing's Sarcoma: A Composite Review.

Hassan M, Shahzadi S, Malik A, Din S, Yasir M, Chun W Genes (Basel). 2023; 14(10).

PMID: 37895198 PMC: 10606885. DOI: 10.3390/genes14101849.


Integration of a multi-omics stem cell differentiation dataset using a dynamical model.

van den Berg P, Berenger-Currias N, Budnik B, Slavov N, Semrau S PLoS Genet. 2023; 19(5):e1010744.

PMID: 37167320 PMC: 10204997. DOI: 10.1371/journal.pgen.1010744.


Exosome-guided direct reprogramming of tumor-associated macrophages from protumorigenic to antitumorigenic to fight cancer.

Kim H, Park H, Chang H, Back J, Lee S, Park Y Bioact Mater. 2023; 25:527-540.

PMID: 37056267 PMC: 10087080. DOI: 10.1016/j.bioactmat.2022.07.021.


References
1.
Li R, Liang J, Ni S, Zhou T, Qing X, Li H . A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010; 7(1):51-63. DOI: 10.1016/j.stem.2010.04.014. View

2.
Niwa H, Ogawa K, Shimosato D, Adachi K . A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009; 460(7251):118-22. DOI: 10.1038/nature08113. View

3.
Choi Y, Lin C, Ho J, He X, Okada N, Bu P . miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011; 13(11):1353-60. PMC: 3541684. DOI: 10.1038/ncb2366. View

4.
Ambros V, Horvitz H . Heterochronic mutants of the nematode Caenorhabditis elegans. Science. 1984; 226(4673):409-16. DOI: 10.1126/science.6494891. View

5.
Mayr C, Bartel D . Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009; 138(4):673-84. PMC: 2819821. DOI: 10.1016/j.cell.2009.06.016. View