» Articles » PMID: 22672625

Human Gene Correlation Analysis (HGCA): a Tool for the Identification of Transcriptionally Co-expressed Genes

Overview
Journal BMC Res Notes
Publisher Biomed Central
Date 2012 Jun 8
PMID 22672625
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell.

Findings: We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster.

Conclusion: Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

Citing Articles

HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in .

Zogopoulos V, Malatras A, Kyriakidis K, Charalampous C, Makrygianni E, Duguez S Cells. 2023; 12(3).

PMID: 36766730 PMC: 9913097. DOI: 10.3390/cells12030388.


Density-based detection of cell transition states to construct disparate and bifurcating trajectories.

Lan T, Hutvagner G, Zhang X, Liu T, Wong L, Li J Nucleic Acids Res. 2022; 50(21):e122.

PMID: 36124665 PMC: 9757071. DOI: 10.1093/nar/gkac785.


Approaches in Gene Coexpression Analysis in Eukaryotes.

Zogopoulos V, Saxami G, Malatras A, Papadopoulos K, Tsotra I, Iconomidou V Biology (Basel). 2022; 11(7).

PMID: 36101400 PMC: 9312353. DOI: 10.3390/biology11071019.


Analysis of ROQUIN, Tristetraprolin (TTP), and BDNF/miR-16/TTP regulatory axis in late onset Alzheimer's disease.

Asadi M, Talebi M, Gharesouran J, Sabaie H, Jalaiei A, Arsang-Jang S Front Aging Neurosci. 2022; 14:933019.

PMID: 36016853 PMC: 9397504. DOI: 10.3389/fnagi.2022.933019.


Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review.

Baltoumas F, Zafeiropoulou S, Karatzas E, Koutrouli M, Thanati F, Voutsadaki K Biomolecules. 2021; 11(8).

PMID: 34439912 PMC: 8391349. DOI: 10.3390/biom11081245.


References
1.
Lee H, Hsu A, Sajdak J, Qin J, Pavlidis P . Coexpression analysis of human genes across many microarray data sets. Genome Res. 2004; 14(6):1085-94. PMC: 419787. DOI: 10.1101/gr.1910904. View

2.
Freeman T, Goldovsky L, Brosch M, van Dongen S, Maziere P, Grocock R . Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol. 2007; 3(10):2032-42. PMC: 2041979. DOI: 10.1371/journal.pcbi.0030206. View

3.
Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K . ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 2008; 37(Database issue):D987-91. PMC: 2686564. DOI: 10.1093/nar/gkn807. View

4.
Su A, Wiltshire T, Batalov S, Lapp H, Ching K, Block D . A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004; 101(16):6062-7. PMC: 395923. DOI: 10.1073/pnas.0400782101. View

5.
Usadel B, Obayashi T, Mutwil M, Giorgi F, Bassel G, Tanimoto M . Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009; 32(12):1633-51. DOI: 10.1111/j.1365-3040.2009.02040.x. View