» Articles » PMID: 22669282

Direct Scaffolding of Biomimetic Hydroxyapatite-gelatin Nanocomposites Using Aminosilane Cross-linker for Bone Regeneration

Overview
Publisher Springer
Date 2012 Jun 7
PMID 22669282
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Hydroxyapatite-gelatin modified siloxane (GEMOSIL) nanocomposite was developed by coating, kneading and hardening processes to provide formable scaffolding for alloplastic graft applications. The present study aims to characterize scaffolding formability and mechanical properties of GEMOSIL, and to test the in vitro and in vivo biocompatibility of GEMOSIL. Buffer Solution initiated formable paste followed by the sol-gel reaction led to a final hardened composite. Results showed the adequate coating of aminosilane, 11-19 wt%, affected the cohesiveness of the powders and the final compressive strength (69 MPa) of the composite. TGA and TEM results showed the effective aminosilane coating that preserves hydroxyapatite-gelatin nanocrystals from damage. Both GEMOSIL with and without titania increased the mineralization of preosteoblasts in vitro. Only did titania additives revealed good in vivo bone formation in rat calvarium defects. The scaffolding formability, due to cohesive bonding among GEMOSIL particles, could be further refined to fulfill the complicated scaffold processes.

Citing Articles

Bioadhesive Nanoparticles in Topical Drug Delivery: Advances, Applications, and Potential for Skin Disorder Treatments.

Almuqbil R, Aldhubiab B Pharmaceutics. 2025; 17(2).

PMID: 40006596 PMC: 11860006. DOI: 10.3390/pharmaceutics17020229.


Combined use of deproteinized bovine bone mineral and α-tricalcium phosphate using gelatin carriers.

Fujioka-Kobayashi M, Urbanova V, Lang N, Katagiri H, Saulacic N BMC Oral Health. 2025; 25(1):275.

PMID: 39984888 PMC: 11846255. DOI: 10.1186/s12903-025-05644-9.


The role of echinacoside-based cross-linker nanoparticles in the treatment of osteoporosis.

Hu D, Cheng C, Bian Z, Xu Y PeerJ. 2024; 12:e17229.

PMID: 38618561 PMC: 11011595. DOI: 10.7717/peerj.17229.


Influence of Chitosan Ascorbate Chirality on the Gelation Kinetics and Properties of Silicon-Chitosan-Containing Glycerohydrogels.

Gegel N, Zhuravleva Y, Shipovskaya A, Malinkina O, Zudina I Polymers (Basel). 2019; 10(3).

PMID: 30966294 PMC: 6414890. DOI: 10.3390/polym10030259.


Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.

Xiao H, Huang W, Xiong K, Ruan S, Yuan C, Mo G Int J Nanomedicine. 2019; 14:2011-2027.

PMID: 30962685 PMC: 6435123. DOI: 10.2147/IJN.S191627.


References
1.
Dupraz A, de Wijn J, v d Meer S, de Groot K . Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res. 1996; 30(2):231-8. DOI: 10.1002/(SICI)1097-4636(199602)30:2<231::AID-JBM13>3.0.CO;2-P. View

2.
Causa F, Netti P, Ambrosio L, Ciapetti G, Baldini N, Pagani S . Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response. J Biomed Mater Res A. 2005; 76(1):151-62. DOI: 10.1002/jbm.a.30528. View

3.
Radin S, Ducheyne P . Effect of bioactive ceramic composition and structure on in vitro behavior. III. Porous versus dense ceramics. J Biomed Mater Res. 1994; 28(11):1303-9. DOI: 10.1002/jbm.820281108. View

4.
Coradin T, Bah S, Livage J . Gelatine/silicate interactions: from nanoparticles to composite gels. Colloids Surf B Biointerfaces. 2004; 35(1):53-8. DOI: 10.1016/j.colsurfb.2004.02.008. View

5.
Coradin T, Livage J . Effect of some amino acids and peptides on silicic acid polymerization. Colloids Surf B Biointerfaces. 2001; 21(4):329-336. DOI: 10.1016/s0927-7765(01)00143-6. View