» Articles » PMID: 22635108

Copper(I)/TEMPO-catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes with Ambient Air

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2012 May 29
PMID 22635108
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

This protocol describes a practical laboratory-scale method for aerobic oxidation of primary alcohols to aldehydes, using a chemoselective Cu(I)/TEMPO (TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxyl) catalyst system. The catalyst is prepared in situ from commercially available reagents, and the reactions are performed in a common organic solvent (acetonitrile) with ambient air as the oxidant. Three different reaction conditions and three procedures for the isolation and purification of the aldehyde product are presented. The oxidations of eight different alcohols, described here, include representative examples of each reaction condition and purification method. Reaction times vary from 20 min to 24 h, depending on the alcohol, whereas the purification methods each take about 2 h. The total time necessary for the complete protocol ranges from 3 to 26 h.

Citing Articles

Selective Reduction of Esters to Access Aldehydes Using Fiddler Crab-Type Boranes.

Dudas A, Gyomore A, Meszaros B, Gondar S, Adamik R, Fegyverneki D J Am Chem Soc. 2024; 147(1):1112-1122.

PMID: 39723648 PMC: 11726553. DOI: 10.1021/jacs.4c14596.


Effects of the ligand linkers on stability of mixed-valence Cu(I)Cu(II) and catalytic aerobic alcohol oxidation activity.

Jehdaramarn A, Chantarojsiri T, Worakul T, Surawatanawong P, Chainok K, Sangtrirutnugul P Sci Rep. 2024; 14(1):15497.

PMID: 38969824 PMC: 11226613. DOI: 10.1038/s41598-024-66227-2.


Room-Temperature Copper-Catalyzed Etherification of Aryl Bromides.

Strauss M, Greaves M, Kim S, Teijaro C, Schmidt M, Scola P Angew Chem Int Ed Engl. 2024; 63(19):e202400333.

PMID: 38359082 PMC: 11045308. DOI: 10.1002/anie.202400333.


Efficient synthesis of fully renewable, furfural-derived building blocks formal Diels-Alder cycloaddition of atypical addends.

Cioc R, Harsevoort E, Lutz M, Bruijnincx P Green Chem. 2023; 25(23):9689-9694.

PMID: 38028818 PMC: 10680129. DOI: 10.1039/d3gc02357e.


Improved Synthesis of the Selected Serine Protease uPA Inhibitor UAMC-00050, a Lead Compound for the Treatment of Dry Eye Disease.

Ceradini D, Cacivkins P, Ramos-Llorca A, Shubin K Org Process Res Dev. 2022; 26(10):2937-2946.

PMID: 36311379 PMC: 9594321. DOI: 10.1021/acs.oprd.2c00244.


References
1.
Gligorich K, Sigman M . Recent advancements and challenges of palladium(II)-catalyzed oxidation reactions with molecular oxygen as the sole oxidant. Chem Commun (Camb). 2009; (26):3854-67. PMC: 2873851. DOI: 10.1039/b902868d. View

2.
Huang L, Jiang H, Qi C, Liu X . Copper-catalyzed intermolecular oxidative [3 + 2] cycloaddition between alkenes and anhydrides: a new synthetic approach to γ-lactones. J Am Chem Soc. 2010; 132(50):17652-4. DOI: 10.1021/ja108073k. View

3.
Taylor R, Reid M, Foot J, Raw S . Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies. Acc Chem Res. 2005; 38(11):851-69. DOI: 10.1021/ar050113t. View

4.
Hodgson D, Bray C, Kindon N . Enamines from terminal epoxides and hindered lithium amides. J Am Chem Soc. 2004; 126(22):6870-1. DOI: 10.1021/ja031770o. View

5.
Kumpulainen E, Koskinen A . Catalytic activity dependency on catalyst components in aerobic copper-TEMPO oxidation. Chemistry. 2009; 15(41):10901-11. DOI: 10.1002/chem.200901245. View