6.
Qin X, Liu M, Yang D, Zhang X
. Concentration-dependent aggregation of CHAPS investigated by NMR spectroscopy. J Phys Chem B. 2010; 114(11):3863-8.
DOI: 10.1021/jp911720w.
View
7.
Modha R, Campbell L, Nietlispach D, Buhecha H, Owen D, Mott H
. The Rac1 polybasic region is required for interaction with its effector PRK1. J Biol Chem. 2007; 283(3):1492-1500.
DOI: 10.1074/jbc.M706760200.
View
8.
Gardner K, Kay L
. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct. 1998; 27:357-406.
DOI: 10.1146/annurev.biophys.27.1.357.
View
9.
Bagby S, Tong K, Liu D, Alattia J, Ikura M
. The button test: a small scale method using microdialysis cells for assessing protein solubility at concentrations suitable for NMR. J Biomol NMR. 1997; 10(3):279-82.
DOI: 10.1023/a:1018359305544.
View
10.
Mazhab-Jafari M, Marshall C, Smith M, Gasmi-Seabrook G, Stambolic V, Rottapel R
. Real-time NMR study of three small GTPases reveals that fluorescent 2'(3')-O-(N-methylanthraniloyl)-tagged nucleotides alter hydrolysis and exchange kinetics. J Biol Chem. 2009; 285(8):5132-6.
PMC: 2820739.
DOI: 10.1074/jbc.C109.064766.
View
11.
Bouguet-Bonnet S, Buck M
. Compensatory and long-range changes in picosecond-nanosecond main-chain dynamics upon complex formation: 15N relaxation analysis of the free and bound states of the ubiquitin-like domain of human plexin-B1 and the small GTPase Rac1. J Mol Biol. 2008; 377(5):1474-87.
PMC: 2667145.
DOI: 10.1016/j.jmb.2008.01.081.
View
12.
Wang H, Hota P, Tong Y, Li B, Shen L, Nedyalkova L
. Structural basis of Rnd1 binding to plexin Rho GTPase binding domains (RBDs). J Biol Chem. 2011; 286(29):26093-106.
PMC: 3138255.
DOI: 10.1074/jbc.M110.197053.
View
13.
Foster R, Hu K, Lu Y, Nolan K, Thissen J, Settleman J
. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol. 1996; 16(6):2689-99.
PMC: 231259.
DOI: 10.1128/MCB.16.6.2689.
View
14.
Henzler-Wildman K, Kern D
. Dynamic personalities of proteins. Nature. 2007; 450(7172):964-72.
DOI: 10.1038/nature06522.
View
15.
Feltham J, Dotsch V, Raza S, Manor D, Cerione R, Sutcliffe M
. Definition of the switch surface in the solution structure of Cdc42Hs. Biochemistry. 1997; 36(29):8755-66.
DOI: 10.1021/bi970694x.
View
16.
Hayashi K, Kojima C
. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector. J Biomol NMR. 2010; 48(3):147-55.
DOI: 10.1007/s10858-010-9445-5.
View
17.
Tong Y, Chugha P, Hota P, Alviani R, Li M, Tempel W
. Binding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J Biol Chem. 2007; 282(51):37215-24.
PMC: 2655321.
DOI: 10.1074/jbc.M703800200.
View
18.
Gribenko A, Patel M, Liu J, McCallum S, Wang C, Makhatadze G
. Rational stabilization of enzymes by computational redesign of surface charge-charge interactions. Proc Natl Acad Sci U S A. 2009; 106(8):2601-6.
PMC: 2650310.
DOI: 10.1073/pnas.0808220106.
View
19.
Morreale A, Venkatesan M, Mott H, Owen D, Nietlispach D, Lowe P
. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat Struct Biol. 2000; 7(5):384-8.
DOI: 10.1038/75158.
View
20.
Buck M
. Trifluoroethanol and colleagues: cosolvents come of age. Recent studies with peptides and proteins. Q Rev Biophys. 1999; 31(3):297-355.
DOI: 10.1017/s003358359800345x.
View