Lin Y, Zheng Y
J Mol Biol. 2024; 437(3):168919.
PMID: 39708912
PMC: 11757035.
DOI: 10.1016/j.jmb.2024.168919.
Sanchez C, Ramirez A, Hodgson L
J Microsc. 2024; .
PMID: 38357769
PMC: 11324865.
DOI: 10.1111/jmi.13270.
Town J, Weiner O
PLoS Biol. 2023; 21(9):e3002307.
PMID: 37747905
PMC: 10553818.
DOI: 10.1371/journal.pbio.3002307.
Kan Y, Paung Y, Seeliger M, Miller W
Cells. 2023; 12(6).
PMID: 36980241
PMC: 10047419.
DOI: 10.3390/cells12060900.
Matsuyama S, Komatsu K, Lee B, Tasaki Y, Miyata M, Xu H
J Immunol. 2022; 209(8):1532-1544.
PMID: 36165197
PMC: 9659420.
DOI: 10.4049/jimmunol.2100901.
CDC42-IQGAP Interactions Scrutinized: New Insights into the Binding Properties of the GAP-Related Domain.
Mosaddeghzadeh N, Pudewell S, Bazgir F, Kazemein Jasemi N, Krumbach O, Gremer L
Int J Mol Sci. 2022; 23(16).
PMID: 36012107
PMC: 9408373.
DOI: 10.3390/ijms23168842.
Computer-aided drug design, synthesis and identification of disulfide compounds as novel and potential allosteric PAK1 inhibitors.
Huang H, Jiang H, Zhang X, Li W, Wang P, Liu F
RSC Adv. 2022; 8(22):11894-11901.
PMID: 35539390
PMC: 9079282.
DOI: 10.1039/c8ra00621k.
Structure-based design of CDC42 effector interaction inhibitors for the treatment of cancer.
Jahid S, Ortega J, Vuong L, Acquistapace I, Hachey S, Flesher J
Cell Rep. 2022; 39(1):110641.
PMID: 35385746
PMC: 9127750.
DOI: 10.1016/j.celrep.2022.110641.
Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling.
Umarao P, Rath P, Gourinath S
Front Genet. 2022; 13:781885.
PMID: 35186026
PMC: 8847673.
DOI: 10.3389/fgene.2022.781885.
The RHO Family GTPases: Mechanisms of Regulation and Signaling.
Mosaddeghzadeh N, Ahmadian M
Cells. 2021; 10(7).
PMID: 34359999
PMC: 8305018.
DOI: 10.3390/cells10071831.
The Multiple Functions of Rho GTPases in Fission Yeasts.
Vicente-Soler J, Soto T, Franco A, Cansado J, Madrid M
Cells. 2021; 10(6).
PMID: 34200466
PMC: 8228308.
DOI: 10.3390/cells10061422.
Molecular subversion of Cdc42 signalling in cancer.
Murphy N, Binti Ahmad Mokhtar A, Mott H, Owen D
Biochem Soc Trans. 2021; 49(3):1425-1442.
PMID: 34196668
PMC: 8412110.
DOI: 10.1042/BST20200557.
Oncogenic mutations on Rac1 affect global intrinsic dynamics underlying GTP and PAK1 binding.
Acuner S, Sumbul F, Torun H, Haliloglu T
Biophys J. 2021; 120(5):866-876.
PMID: 33515600
PMC: 8008323.
DOI: 10.1016/j.bpj.2021.01.016.
The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2.
Arrington M, Temple B, Schaefer A, Campbell S
J Biol Chem. 2020; 295(34):12130-12142.
PMID: 32636302
PMC: 7443499.
DOI: 10.1074/jbc.RA120.012915.
Effect of PAK Inhibition on Cell Mechanics Depends on Rac1.
Mierke C, Puder S, Aermes C, Fischer T, Kunschmann T
Front Cell Dev Biol. 2020; 8:13.
PMID: 32047750
PMC: 6997127.
DOI: 10.3389/fcell.2020.00013.
Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region.
Tetley G, Szeto A, Fountain A, Mott H, Owen D
J Biol Chem. 2018; 293(39):15136-15151.
PMID: 30104412
PMC: 6166713.
DOI: 10.1074/jbc.RA118.003290.
Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.
Martinelli S, Krumbach O, Pantaleoni F, Coppola S, Amin E, Pannone L
Am J Hum Genet. 2018; 102(2):309-320.
PMID: 29394990
PMC: 5985417.
DOI: 10.1016/j.ajhg.2017.12.015.
CDC42 binds PAK4 via an extended GTPase-effector interface.
Ha B, Boggon T
Proc Natl Acad Sci U S A. 2018; 115(3):531-536.
PMID: 29295922
PMC: 5776996.
DOI: 10.1073/pnas.1717437115.
Identification of a Fragmented Small GTPase Capable of Conditional Effector Binding.
Zhao J, Stains C
RSC Adv. 2017; 7(20):12265-12268.
PMID: 28966788
PMC: 5619660.
DOI: 10.1039/C6RA25575B.
Immunological Disorders: Regulation of Ca Signaling in T Lymphocytes.
Srikanth S, Woo J, Sun Z, Gwack Y
Adv Exp Med Biol. 2017; 993:397-424.
PMID: 28900926
PMC: 8957800.
DOI: 10.1007/978-3-319-57732-6_21.