» Articles » PMID: 22481908

Real-Time Compressive Sensing MRI Reconstruction Using GPU Computing and Split Bregman Methods

Overview
Publisher Wiley
Specialty Radiology
Date 2012 Apr 7
PMID 22481908
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.

Citing Articles

Accelerating FLAIR imaging via deep learning reconstruction: potential for evaluating white matter hyperintensities.

Nishioka N, Shimizu Y, Kaneko Y, Shirai T, Suzuki A, Amemiya T Jpn J Radiol. 2024; 43(2):200-209.

PMID: 39316286 PMC: 11790734. DOI: 10.1007/s11604-024-01666-5.


Multi-Device Parallel MRI Reconstruction: Efficient Partitioning for Undersampled 5D Cardiac CINE.

Lopez-Ales E, Menchon-Lara R, Simmross-Wattenberg F, Rodriguez-Cayetano M, Martin-Fernandez M, Alberola-Lopez C Sensors (Basel). 2024; 24(4).

PMID: 38400470 PMC: 10891760. DOI: 10.3390/s24041313.


A Superfast Super-Resolution Method for Radar Forward-Looking Imaging.

Huo W, Zhang Q, Zhang Y, Zhang Y, Huang Y, Yang J Sensors (Basel). 2021; 21(3).

PMID: 33530423 PMC: 7865315. DOI: 10.3390/s21030817.


Real-Time Magnetic Resonance Imaging.

Nayak K, Lim Y, Campbell-Washburn A, Steeden J J Magn Reson Imaging. 2020; 55(1):81-99.

PMID: 33295674 PMC: 8435094. DOI: 10.1002/jmri.27411.


Parallel implementation of L + S signal recovery in dynamic MRI.

Qazi S, Tariq F, Ullah I, Omer H MAGMA. 2020; 34(2):297-307.

PMID: 32601881 DOI: 10.1007/s10334-020-00861-5.


References
1.
Akcakaya M, Nam S, Hu P, Moghari M, Ngo L, Tarokh V . Compressed sensing with wavelet domain dependencies for coronary MRI: a retrospective study. IEEE Trans Med Imaging. 2011; 30(5):1090-9. PMC: 4212510. DOI: 10.1109/TMI.2010.2089519. View

2.
Lustig M, Donoho D, Pauly J . Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007; 58(6):1182-95. DOI: 10.1002/mrm.21391. View

3.
Jia X, Lou Y, Li R, Song W, Jiang S . GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation. Med Phys. 2010; 37(4):1757-60. DOI: 10.1118/1.3371691. View

4.
Hansen M, Atkinson D, Sorensen T . Cartesian SENSE and k-t SENSE reconstruction using commodity graphics hardware. Magn Reson Med. 2008; 59(3):463-8. DOI: 10.1002/mrm.21523. View

5.
Sorensen T, Schaeffter T, Noe K, Hansen M . Accelerating the nonequispaced fast Fourier transform on commodity graphics hardware. IEEE Trans Med Imaging. 2008; 27(4):538-47. DOI: 10.1109/TMI.2007.909834. View