» Articles » PMID: 2246770

Mouse and Hamster Mutants As Models for Waardenburg Syndromes in Humans

Overview
Journal J Med Genet
Specialty Genetics
Date 1990 Oct 1
PMID 2246770
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Four different Waardenburg syndromes have been defined based upon observed phenotypes. These syndromes are responsible for approximately 2% of subjects with profound congenital hearing loss. At present, Waardenburg syndromes have not been mapped to particular human chromosomes. One or more of the mouse mutant alleles, Ph (patch), s (piebald), Sp (splotch), and Mior (microphthalmia-Oak Ridge) and the hamster mutation Wh (anophthalmic white) may be homologous to mutations causing Waardenburg syndromes. In heterozygotes, phenotypic effects of these four mouse mutations and the hamster mutation are similar to the phenotypes produced by different Waardenburg syndrome mutations. The chromosomal locations and syntenic relationships associated with three of the four mouse mutant genes have been used to predict human chromosomal locations for Waardenburg syndromes: (1) on chromosome 2q near FN1 (fibronectin 1), (2) on chromosome 3p near the proto-oncogene RAF1 or 3q near RHO (rhodopsin), and (3) on chromosome 4p near the proto-oncogene KIT. Waardenburg syndromes show extensive intrafamilial phenotypic variability. Results of our studies with the hamster mutation Wh suggest that this variability may be explained in part by modifier genes segregating within families.

Citing Articles

Waardenburg Syndrome Expression and Penetrance.

Shelby M J Rare Dis Res Treat. 2019; 2(6):31-40.

PMID: 30854529 PMC: 6404762.


Rare Association of Waardenburg Syndrome with Minimal Change Disease.

Anvesh G, Raju S, Prasad K, Sharma A, Surendra M Indian J Nephrol. 2018; 28(3):226-228.

PMID: 29962674 PMC: 5998718. DOI: 10.4103/ijn.IJN_55_17.


Waardenburg syndrome type I: Dental phenotypes and genetic analysis of an extended family.

Solia-Nasser L, de Aquino S, Paranaiba L, Gomes A, Dos-Santos-Neto P, Coletta R Med Oral Patol Oral Cir Bucal. 2016; 21(3):e321-7.

PMID: 27031059 PMC: 4867205. DOI: 10.4317/medoral.20789.


Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis.

Nissan X, Larribere L, Saidani M, Hurbain I, Delevoye C, Feteira J Proc Natl Acad Sci U S A. 2011; 108(36):14861-6.

PMID: 21856949 PMC: 3169131. DOI: 10.1073/pnas.1019070108.


Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease.

Kubic J, Young K, Plummer R, Ludvik A, Lang D Pigment Cell Melanoma Res. 2008; 21(6):627-45.

PMID: 18983540 PMC: 2979299. DOI: 10.1111/j.1755-148X.2008.00514.x.


References
1.
Nadeau J . Maps of linkage and synteny homologies between mouse and man. Trends Genet. 1989; 5(3):82-6. DOI: 10.1016/0168-9525(89)90031-0. View

2.
Shah K, DALAL S, Desai M, Sheth P, Joshi N, Ambani L . White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease: possible variant of Waardenburg syndrome. J Pediatr. 1981; 99(3):432-5. DOI: 10.1016/s0022-3476(81)80339-3. View

3.
COTZIAS G, Tang L, Miller S, Hurley L . A mutation influencing the transportation of manganese, L-dopa, and L-tryptophan. Science. 1972; 176(4033):410-2. DOI: 10.1126/science.176.4033.410. View

4.
Omenn G, MCKUSICK V . The association of Waardenburg syndrome and Hirschsprung megacolon. Am J Med Genet. 1979; 3(3):217-23. DOI: 10.1002/ajmg.1320030302. View

5.
Dunn L, CHARLES D . Studies on Spotting Patterns I. Analysis of Quantitative Variations in the Pied Spotting of the House Mouse. Genetics. 1937; 22(1):14-42. PMC: 1208742. DOI: 10.1093/genetics/22.1.14. View