H2A.Z.2.2 is an Alternatively Spliced Histone H2A.Z Variant That Causes Severe Nucleosome Destabilization
Overview
Authors
Affiliations
The histone variant H2A.Z has been implicated in many biological processes, such as gene regulation and genome stability. Here, we present the identification of H2A.Z.2.2 (Z.2.2), a novel alternatively spliced variant of histone H2A.Z and provide a comprehensive characterization of its expression and chromatin incorporation properties. Z.2.2 mRNA is found in all human cell lines and tissues with highest levels in brain. We show the proper splicing and in vivo existence of this variant protein in humans. Furthermore, we demonstrate the binding of Z.2.2 to H2A.Z-specific TIP60 and SRCAP chaperone complexes and its active replication-independent deposition into chromatin. Strikingly, various independent in vivo and in vitro analyses, such as biochemical fractionation, comparative FRAP studies of GFP-tagged H2A variants, size exclusion chromatography and single molecule FRET, in combination with in silico molecular dynamics simulations, consistently demonstrate that Z.2.2 causes major structural changes and significantly destabilizes nucleosomes. Analyses of deletion mutants and chimeric proteins pinpoint this property to its unique C-terminus. Our findings enrich the list of known human variants by an unusual protein belonging to the H2A.Z family that leads to the least stable nucleosome known to date.
Davie J, Sattarifard H, Sudhakar S, Roberts C, Beacon T, Muker I Subcell Biochem. 2025; 108():1-49.
PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1.
The "Ins and Outs and What-Abouts" of H2A.Z: A tribute to C. David Allis.
Diegmuller F, Leers J, Hake S J Biol Chem. 2025; 301(2):108154.
PMID: 39761855 PMC: 11808731. DOI: 10.1016/j.jbc.2025.108154.
Histone variants: The bricks that fit differently.
Hegazy Y, Dhahri H, El Osmani N, George S, Chandler D, Fondufe-Mittendorf Y J Biol Chem. 2024; 301(1):108048.
PMID: 39638247 PMC: 11742582. DOI: 10.1016/j.jbc.2024.108048.
Epigenetic modulation via the C-terminal tail of H2A.Z.
Imre L, Nanasi Jr P, Benhamza I, Enyedi K, Mocsar G, Bosire R Nat Commun. 2024; 15(1):9171.
PMID: 39448645 PMC: 11502880. DOI: 10.1038/s41467-024-53514-9.
The Function of H2A Histone Variants and Their Roles in Diseases.
Yin X, Zeng D, Liao Y, Tang C, Li Y Biomolecules. 2024; 14(8).
PMID: 39199381 PMC: 11352661. DOI: 10.3390/biom14080993.