» Articles » PMID: 22355601

Enhanced Clickability of Doubly Sterically-hindered Aryl Azides

Overview
Journal Sci Rep
Specialty Science
Date 2012 Feb 23
PMID 22355601
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Steric character is one of the most fundamental factors to determine the reactivity of the substrate in organic synthesis. In bimolecular reaction, the sterically-bulky group situated close to the reactive center generally prevents the approach of the reaction partner retarding the bond formation. This report describes, to the contrary, significantly enhanced reactivity of 2,6-disubstituted phenyl azides observed in catalyst-free 1,3-dipolar cycloaddition with alkynes, unexpectedly reacting faster than unsubstituted phenyl azide and even more faster than unhindered alkyl azide, despite the steric hindrance adjacent to the reactive azido group. Experimental and computational studies have indicated that the steric hindrance eliciting the inhibition of resonance between azido group and the aromatic ring is the primary cause of this apparently-paradoxical phenomenon. This is the first type of steric acceleration, indicating a possibility of designing a highly reactive functional group by strategically locating it in the sterically-congested environment.

Citing Articles

Observing bioorthogonal macrocyclizations in the nuclear envelope of live cells using on/on fluorescence lifetime microscopy.

Pim S, Bourges A, Wu D, Duran-Sampedro G, Garre M, OShea D Chem Sci. 2024; .

PMID: 39184298 PMC: 11343072. DOI: 10.1039/d4sc03489a.


Therapeutic efficacy of At-radiolabeled 2,6-diisopropylphenyl azide in mouse models of human lung cancer.

Ode Y, Pradipta A, Ahmadi P, Ishiwata A, Nakamura A, Egawa Y Chem Sci. 2023; 14(30):8054-8060.

PMID: 37538829 PMC: 10395307. DOI: 10.1039/d3sc02513f.


Azides in the Synthesis of Various Heterocycles.

Nayl A, Aly A, Arafa W, Ahmed I, Abd-Elhamid A, El-Fakharany E Molecules. 2022; 27(12).

PMID: 35744839 PMC: 9228195. DOI: 10.3390/molecules27123716.


Targeted 1,3-dipolar cycloaddition with acrolein for cancer prodrug activation.

Pradipta A, Ahmadi P, Terashima K, Muguruma K, Fujii M, Ichino T Chem Sci. 2022; 12(15):5438-5449.

PMID: 35340932 PMC: 8873552. DOI: 10.1039/d0sc06083f.


Live Monitoring of Strain-Promoted Azide Alkyne Cycloadditions in Complex Reaction Environments by Inline ATR-IR Spectroscopy.

Svatunek D, Eilenberger G, Denk C, Lumpi D, Hametner C, Allmaier G Chemistry. 2020; 26(44):9851-9854.

PMID: 31944448 PMC: 7496163. DOI: 10.1002/chem.201905478.


References
1.
Tornoe C, Christensen C, Meldal M . Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002; 67(9):3057-64. DOI: 10.1021/jo011148j. View

2.
Laughlin S, Baskin J, Amacher S, Bertozzi C . In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008; 320(5876):664-7. PMC: 2701225. DOI: 10.1126/science.1155106. View

3.
Kii I, Shiraishi A, Hiramatsu T, Matsushita T, Uekusa H, Yoshida S . Strain-promoted double-click reaction for chemical modification of azido-biomolecules. Org Biomol Chem. 2010; 8(18):4051-5. DOI: 10.1039/c0ob00003e. View

4.
Ning X, Guo J, Wolfert M, Boons G . Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast huisgen cycloadditions. Angew Chem Int Ed Engl. 2008; 47(12):2253-5. PMC: 2835304. DOI: 10.1002/anie.200705456. View

5.
Schoenebeck F, Ess D, Jones G, Houk K . Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study. J Am Chem Soc. 2009; 131(23):8121-33. DOI: 10.1021/ja9003624. View