» Articles » PMID: 22355360

Identifying Neighborhoods of Coordinated Gene Expression and Metabolite Profiles

Overview
Journal PLoS One
Date 2012 Feb 23
PMID 22355360
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First, we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals pathway specific effects that can degrade this global regulation signature and complicates the observed coordination between transcript-metabolite profiles.

Citing Articles

New views on the selection acting on genetic polymorphism in central metabolic genes.

Eanes W Ann N Y Acad Sci. 2016; 1389(1):108-123.

PMID: 27859384 PMC: 5318266. DOI: 10.1111/nyas.13285.


The Human Blood Metabolome-Transcriptome Interface.

Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C PLoS Genet. 2015; 11(6):e1005274.

PMID: 26086077 PMC: 4473262. DOI: 10.1371/journal.pgen.1005274.


NetPathMiner: R/Bioconductor package for network path mining through gene expression.

Mohamed A, Hancock T, Nguyen C, Mamitsuka H Bioinformatics. 2014; 30(21):3139-41.

PMID: 25075120 PMC: 4609018. DOI: 10.1093/bioinformatics/btu501.


What mRNA Abundances Can Tell us about Metabolism.

Hoppe A Metabolites. 2014; 2(3):614-31.

PMID: 24957650 PMC: 3901220. DOI: 10.3390/metabo2030614.


MIRA: mutual information-based reporter algorithm for metabolic networks.

Cicek A, Roeder K, Ozsoyoglu G Bioinformatics. 2014; 30(12):i175-84.

PMID: 24931981 PMC: 4058943. DOI: 10.1093/bioinformatics/btu290.

References
1.
Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A . Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 2007; 316(5824):593-7. DOI: 10.1126/science.1132067. View

2.
Edgar R, Domrachev M, Lash A . Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2001; 30(1):207-10. PMC: 99122. DOI: 10.1093/nar/30.1.207. View

3.
Munson G, Lam D, Outten F, OHalloran T . Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol. 2000; 182(20):5864-71. PMC: 94710. DOI: 10.1128/JB.182.20.5864-5871.2000. View

4.
Hahn J, Hu Z, Thiele D, Iyer V . Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol. 2004; 24(12):5249-56. PMC: 419887. DOI: 10.1128/MCB.24.12.5249-5256.2004. View

5.
Spirin V, Gelfand M, Mironov A, Mirny L . A metabolic network in the evolutionary context: multiscale structure and modularity. Proc Natl Acad Sci U S A. 2006; 103(23):8774-9. PMC: 1482654. DOI: 10.1073/pnas.0510258103. View