Takeda Y, Sato K, Hosoki Y, Tachibanaki S, Koike C, Amano A
Sci Rep. 2022; 12(1):19529.
PMID: 36376413
PMC: 9663442.
DOI: 10.1038/s41598-022-23069-0.
Bondarenko V, Hayashi F, Usukura J, Yamazaki A
Mol Cell Biochem. 2009; 334(1-2):125-39.
PMID: 19941040
DOI: 10.1007/s11010-009-0323-y.
Bereta G, Wang B, Kiser P, Baehr W, Jang G, Palczewski K
J Biol Chem. 2009; 285(3):1899-908.
PMID: 19901021
PMC: 2804348.
DOI: 10.1074/jbc.M109.061713.
Lewis J, Miller J, Mendel-Hartvig J, Schaechter L, Kliger D, Dratz E
Proc Natl Acad Sci U S A. 1984; 81(3):743-7.
PMID: 16593412
PMC: 344912.
DOI: 10.1073/pnas.81.3.743.
Chen C, Nakatani K, Koutalos Y
J Physiol. 2003; 553(Pt 1):125-35.
PMID: 14500766
PMC: 2343491.
DOI: 10.1113/jphysiol.2003.053280.
Decreased energy requirement of toad retina during light adaptation as demonstrated by 31P nuclear magnetic resonance.
Apte D, Ebrey T, Dawson M
J Physiol. 1993; 464:291-306.
PMID: 8229802
PMC: 1175386.
DOI: 10.1113/jphysiol.1993.sp019635.
On the evaluation of photoreceptor properties by micro-fluorimetric measurements of fluorochrome diffusion.
Hochstrate P, Ruppel H
Biophys Struct Mech. 1980; 6(2):125-38.
PMID: 7388121
DOI: 10.1007/BF00535749.
Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments.
Stryer L
Proc Natl Acad Sci U S A. 1980; 77(5):2500-4.
PMID: 6930647
PMC: 349428.
DOI: 10.1073/pnas.77.5.2500.
Light-dependent effects of a hydrolysis-resistant analog of GTP on rod photoresponses in the toad retina.
Clack J, Oakley 2nd B, Pepperberg D
Proc Natl Acad Sci U S A. 1982; 79(8):2690-4.
PMID: 6806815
PMC: 346267.
DOI: 10.1073/pnas.79.8.2690.
ATP causes a structural change in retinal rod outer segments: disc swelling is not involved.
Thacher S
J Membr Biol. 1983; 74(2):95-102.
PMID: 6410075
DOI: 10.1007/BF01870498.
Adapting lights and lowered extracellular free calcium desensitize toad photoreceptors by differing mechanisms.
Greenblatt R
J Physiol. 1983; 336:579-605.
PMID: 6410053
PMC: 1198986.
DOI: 10.1113/jphysiol.1983.sp014599.
Protons block the dark current of isolated retinal rods.
Mueller P, Pugh Jr E
Proc Natl Acad Sci U S A. 1983; 80(7):1892-6.
PMID: 6300877
PMC: 393716.
DOI: 10.1073/pnas.80.7.1892.
Surfaces of rod photoreceptor disk membranes: light-activated enzymes.
Roof D, Korenbrot J, Heuser J
J Cell Biol. 1982; 95(2 Pt 1):501-9.
PMID: 6292237
PMC: 2112954.
DOI: 10.1083/jcb.95.2.501.
Glycolytic and oxidative metabolism in relation to retinal function.
WINKLER B
J Gen Physiol. 1981; 77(6):667-92.
PMID: 6267165
PMC: 2215447.
DOI: 10.1085/jgp.77.6.667.
Ultracytochemical study of Ca++-ATPase and K+-NPPase activities in retinal photoreceptors of the guinea pig.
Ueno S, Bambauer H, Umar H, Ueck M, Ogawa K
Cell Tissue Res. 1984; 237(3):479-89.
PMID: 6207924
DOI: 10.1007/BF00228432.
Regulation of cyclic nucleotides in retinal photoreceptors. An ultracytochemical approach on the role of cyclases.
Athanassious R, Klyne M, Ali M
Cell Tissue Res. 1984; 237(1):95-101.
PMID: 6148145
DOI: 10.1007/BF00229203.
Light-induced changes in GTP and ATP in frog rod photoreceptors. Comparison with recovery of dark current and light sensitivity during dark adaptation.
Biernbaum M, Bownds M
J Gen Physiol. 1985; 85(1):107-21.
PMID: 3968531
PMC: 2215811.
DOI: 10.1085/jgp.85.1.107.
Frog rod outer segments with attached inner segment ellipsoids as an in vitro model for photoreceptors on the retina.
Biernbaum M, Bownds M
J Gen Physiol. 1985; 85(1):83-105.
PMID: 3871471
PMC: 2215816.
DOI: 10.1085/jgp.85.1.83.
Heat produced by the dark-adapted bullfrog retina in response to light pulses.
Tasaki I, Nakaye T
Biophys J. 1986; 50(2):285-93.
PMID: 3488768
PMC: 1329745.
DOI: 10.1016/S0006-3495(86)83462-2.
Transduction heats in retinal rods: tests of the role of cGMP by pyroelectric calorimetry.
HAGINS W, Ross P, Tate R, Yoshikami S
Proc Natl Acad Sci U S A. 1989; 86(4):1224-8.
PMID: 2537492
PMC: 286660.
DOI: 10.1073/pnas.86.4.1224.