» Articles » PMID: 22287207

Similarity and Number of Alternatives in the Random-dot Motion Paradigm

Overview
Publisher Springer
Specialties Psychiatry
Psychology
Date 2012 Jan 31
PMID 22287207
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

The popular random-dot motion (RDM) task has recently been applied to multiple-choice perceptual decision-making. However, changes in the number of alternatives on an RDM display lead to changes in the similarity between the alternatives, complicating the study of multiple-choice effects. To disentangle the effects of similarity and number of alternatives, we analyzed behavior in the RDM task using an optimal-observer model. The model applies Bayesian principles to give an account of how changes in the stimulus influence the decision-making process. A possible neural implementation of the optimal-observer model is discussed, and we provide behavioral data that support the model. We verify the predictions from the optimal-observer model by fitting a descriptive model of choice behavior (the linear ballistic accumulator model) to the behavioral data. The results show that (a) there is a natural interaction in the RDM task between similarity and the number of alternatives; (b) the number of alternatives influences “response caution”, whereas the similarity between the alternatives influences “drift rate”; and (c) decisions in the RDM task are near optimal when participants are presented with multiple alternatives.

Citing Articles

Probabilistic causal reasoning under time pressure.

Kolvoort I, Fisher E, van Rooij R, Schulz K, Van Maanen L PLoS One. 2024; 19(4):e0297011.

PMID: 38603716 PMC: 11008876. DOI: 10.1371/journal.pone.0297011.


Developing control-theoretic objectives for large-scale brain dynamics and cognitive enhancement.

Singh M, Cole M, Braver T, Ching S Annu Rev Control. 2024; 54:363-376.

PMID: 38250171 PMC: 10798814. DOI: 10.1016/j.arcontrol.2022.05.001.


Non-parametric mixture modeling of cognitive psychological data: A new method to disentangle hidden strategies.

Archambeau K, Couto J, Van Maanen L Behav Res Methods. 2022; 55(5):2232-2248.

PMID: 36219308 PMC: 10439044. DOI: 10.3758/s13428-022-01837-0.


Degenerate boundaries for multiple-alternative decisions.

Baker S, Griffith T, Lepora N Nat Commun. 2022; 13(1):5066.

PMID: 36038538 PMC: 9424291. DOI: 10.1038/s41467-022-32741-y.


Sequential sampling models without random between-trial variability: the racing diffusion model of speeded decision making.

Tillman G, Van Zandt T, Logan G Psychon Bull Rev. 2020; 27(5):911-936.

PMID: 32424622 DOI: 10.3758/s13423-020-01719-6.


References
1.
Mulder M, Bos D, Weusten J, Van Belle J, van Dijk S, Simen P . Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010; 68(12):1114-9. DOI: 10.1016/j.biopsych.2010.07.031. View

2.
Ball K, Sekuler R . A specific and enduring improvement in visual motion discrimination. Science. 1982; 218(4573):697-8. DOI: 10.1126/science.7134968. View

3.
Hanks T, Mazurek M, Kiani R, Hopp E, Shadlen M . Elapsed decision time affects the weighting of prior probability in a perceptual decision task. J Neurosci. 2011; 31(17):6339-52. PMC: 3356114. DOI: 10.1523/JNEUROSCI.5613-10.2011. View

4.
Shadlen M, Newsome W . Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J Neurophysiol. 2001; 86(4):1916-36. DOI: 10.1152/jn.2001.86.4.1916. View

5.
TEICHNER W, Krebs M . Laws of visual choice reaction time. Psychol Rev. 1974; 81(1):75-98. DOI: 10.1037/h0035867. View