» Articles » PMID: 22284191

Regular Spiking and Intrinsic Bursting Pyramidal Cells Show Orthogonal Forms of Experience-dependent Plasticity in Layer V of Barrel Cortex

Overview
Journal Neuron
Publisher Cell Press
Specialty Neurology
Date 2012 Jan 31
PMID 22284191
Citations 53
Authors
Affiliations
Soon will be listed here.
Abstract

Most functional plasticity studies in the cortex have focused on layers (L) II/III and IV, whereas relatively little is known of LV. Structural measurements of dendritic spines in vivo suggest some specialization among LV cell subtypes. We therefore studied experience-dependent plasticity in the barrel cortex using intracellular recordings to distinguish regular spiking (RS) and intrinsic bursting (IB) subtypes. Postsynaptic potentials and suprathreshold responses in vivo revealed a remarkable dichotomy in RS and IB cell plasticity; spared whisker potentiation occurred in IB but not RS cells while deprived whisker depression occurred in RS but not IB cells. Similar RS/IB differences were found in the LII/III to V connections in brain slices. Modeling studies showed that subthreshold changes predicted the suprathreshold changes. These studies demonstrate the major functional partition of plasticity within a single cortical layer and reveal the LII/III to LV connection as a major excitatory locus of cortical plasticity.

Citing Articles

Revealing single-neuron and network-activity interaction by combining high-density microelectrode array and optogenetics.

Kobayashi T, Shimba K, Narumi T, Asahina T, Kotani K, Jimbo Y Nat Commun. 2024; 15(1):9547.

PMID: 39528508 PMC: 11555060. DOI: 10.1038/s41467-024-53505-w.


Molecular states underlying neuronal cell type development and plasticity in the whisker cortex.

Butrus S, Monday H, Yoo C, Feldman D, Shekhar K bioRxiv. 2024; .

PMID: 39416021 PMC: 11482765. DOI: 10.1101/2024.10.07.617106.


Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics.

Dura-Bernal S, Neymotin S, Suter B, Dacre J, Moreira J, Urdapilleta E Cell Rep. 2023; 42(6):112574.

PMID: 37300831 PMC: 10592234. DOI: 10.1016/j.celrep.2023.112574.


Cell-type-specific integration of feedforward and feedback synaptic inputs in the posterior parietal cortex.

Rindner D, Proddutur A, Lur G Neuron. 2022; 110(22):3760-3773.e5.

PMID: 36087582 PMC: 9671855. DOI: 10.1016/j.neuron.2022.08.019.


Genetic Deficiency of p53 Leads to Structural, Functional, and Synaptic Deficits in Primary Somatosensory Cortical Neurons of Adult Mice.

Kuang H, Liu T, Jiao C, Wang J, Wu S, Wu J Front Mol Neurosci. 2022; 15:871974.

PMID: 35465090 PMC: 9021533. DOI: 10.3389/fnmol.2022.871974.


References
1.
Thomson A, Bannister A . Interlaminar connections in the neocortex. Cereb Cortex. 2002; 13(1):5-14. DOI: 10.1093/cercor/13.1.5. View

2.
Grewe B, Bonnan A, Frick A . Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons. Front Cell Neurosci. 2010; 4:13. PMC: 2876869. DOI: 10.3389/fncel.2010.00013. View

3.
Jacob V, Brasier D, Erchova I, Feldman D, Shulz D . Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. J Neurosci. 2007; 27(6):1271-84. PMC: 3070399. DOI: 10.1523/JNEUROSCI.4264-06.2007. View

4.
Zhu J, Connors B . Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J Neurophysiol. 1999; 81(3):1171-83. DOI: 10.1152/jn.1999.81.3.1171. View

5.
Holtmaat A, Wilbrecht L, Knott G, Welker E, Svoboda K . Experience-dependent and cell-type-specific spine growth in the neocortex. Nature. 2006; 441(7096):979-83. DOI: 10.1038/nature04783. View