Skinner J, Palar S, Allen C, Raderstorf A, Blake P, Moran Reyes A
Environ Sci Technol. 2024; 58(14):6274-6283.
PMID: 38531380
PMC: 11008246.
DOI: 10.1021/acs.est.3c08068.
Wu Z, Man Q, Niu H, Lyu H, Song H, Li R
Front Microbiol. 2023; 13:1053169.
PMID: 36620007
PMC: 9813602.
DOI: 10.3389/fmicb.2022.1053169.
Rolston H, Hyman M, Semprini L
Biodegradation. 2022; 33(4):349-371.
PMID: 35553282
DOI: 10.1007/s10532-022-09987-w.
Fenner K, Elsner M, Lueders T, McLachlan M, Wackett L, Zimmermann M
ACS ES T Water. 2021; 1(7):1541-1554.
PMID: 34278380
PMC: 8276273.
DOI: 10.1021/acsestwater.1c00025.
Ridl J, Suman J, Fraraccio S, Hradilova M, Strejcek M, Cajthaml T
Stand Genomic Sci. 2018; 13:3.
PMID: 29435100
PMC: 5796565.
DOI: 10.1186/s40793-017-0306-7.
Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE).
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O
Sci Rep. 2017; 7(1):8406.
PMID: 28814712
PMC: 5559444.
DOI: 10.1038/s41598-017-07760-1.
Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.
Lu Q, de Toledo R, Xie F, Li J, Shim H
Environ Sci Pollut Res Int. 2015; 22(18):14043-9.
PMID: 25956516
DOI: 10.1007/s11356-015-4644-y.
Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates.
Li Y, Li B, Wang C, Fan J, Sun H
Int J Mol Sci. 2014; 15(5):9134-48.
PMID: 24857922
PMC: 4057779.
DOI: 10.3390/ijms15059134.
Stable carbon isotope fractionation in chlorinated ethene degradation by bacteria expressing three toluene oxygenases.
Clingenpeel S, Moan J, McGrath D, Hungate B, Watwood M
Front Microbiol. 2012; 3:63.
PMID: 22363335
PMC: 3282480.
DOI: 10.3389/fmicb.2012.00063.
Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria.
Mars A, Prins G, Wietzes P, de Koning W, Janssen D
Appl Environ Microbiol. 2005; 64(1):208-15.
PMID: 16349481
PMC: 124695.
DOI: 10.1128/AEM.64.1.208-215.1998.
Effects of dichloroethene isomers on the induction and activity of butane monooxygenase in the alkane-oxidizing bacterium "Pseudomonas butanovora".
Doughty D, Sayavedra-Soto L, Arp D, Bottomley P
Appl Environ Microbiol. 2005; 71(10):6054-9.
PMID: 16204521
PMC: 1265974.
DOI: 10.1128/AEM.71.10.6054-6059.2005.
Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
Futamata H, Nagano Y, Watanabe K, Hiraishi A
Appl Environ Microbiol. 2005; 71(2):904-11.
PMID: 15691947
PMC: 546690.
DOI: 10.1128/AEM.71.2.904-911.2005.
Correspondence between community structure and function during succession in phenol- and phenol-plus-trichloroethene-fed sequencing batch reactors.
Ayala-Del-Rio H, Callister S, Criddle C, Tiedje J
Appl Environ Microbiol. 2004; 70(8):4950-60.
PMID: 15294835
PMC: 492464.
DOI: 10.1128/AEM.70.8.4950-4960.2004.
Biotransformation of trichloroethene by pure bacterial cultures.
Ruzicka J, Muller J, Vit D, Hutecka V, Hoffmann J, Datkova H
Folia Microbiol (Praha). 2002; 47(5):467-72.
PMID: 12503388
DOI: 10.1007/BF02818782.
Characterization of the adaptive response to trichloroethylene-mediated stresses in Ralstonia pickettii PKO1.
Park J, Kukor J, Abriola L
Appl Environ Microbiol. 2002; 68(11):5231-40.
PMID: 12406709
PMC: 129943.
DOI: 10.1128/AEM.68.11.5231-5240.2002.
Biodegradation, biotransformation, and biocatalysis (b3).
Parales R, Bruce N, Schmid A, Wackett L
Appl Environ Microbiol. 2002; 68(10):4699-709.
PMID: 12324310
PMC: 126401.
DOI: 10.1128/AEM.68.10.4699-4709.2002.
Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation.
Futamata H, Harayama S, Watanabe K
Appl Environ Microbiol. 2001; 67(10):4671-7.
PMID: 11571171
PMC: 93218.
DOI: 10.1128/AEM.67.10.4671-4677.2001.