» Articles » PMID: 22258080

Molecular Identification of Echinococcus Species from Eastern and Southern Qinghai, China, Based on the Mitochondrial Cox1 Gene

Overview
Journal Parasitol Res
Specialty Parasitology
Date 2012 Jan 20
PMID 22258080
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

The Qinghai-Tibetan Plateau (QTP, in western China), which is the largest and highest plateau on Earth, is a highly epidemic region for Echinococcus spp. We collected 70 Echinococcus samples from humans, dogs, sheep, yaks, plateau pikas, and voles in eastern and southern Qinghai and genotyped them using the mitochondrial DNA marker cytochrome oxidase subunit I gene and maximum parsimony and Bayesian reconstruction methods. Based on the 792-bp sequence matrix, we recorded 124 variable sites, of which, 115 were parsimony-informative. Thirty-four haplotypes (H1-H34) were detected, of which H1-H15, H16-H17, and H18-H34 belonged to Echinococcus shiquicus, Echinococcus multilocularis, and Echinococcus granulosus, respectively. Within 26 human isolates, three were identified as E. multilocularis and 23 were E. granulosus. We also detected a dual infection case in a dog with E. multilocularis and E. granulosus. The intraspecific haplotype (Hd ± SD) and nucleotide (Nd ± SD) diversity of E. shiquicus (0.947 ± 0.021; 0.00441 ± 0.00062) was higher than that for E. granulosus (0.896 ± 0.038; 0.00221 ± 0.00031) and E. multilocularis (0.286 ± 0.196; 0.00036 ± 0.00025). Moreover, the haplotype network of E. shiquicus showed a radial feature rather than a divergent feature in a previous study, indicating this species in the QTP has also evolved with bottleneck effects.

Citing Articles

Genetic diversity and transmission patterns of Echinococcus granulosus sensu stricto among domestic ungulates of Sardinia, Italy.

Mehmood N, Dessi G, Ahmed F, Joanny G, Tamponi C, Cappai M Parasitol Res. 2021; 120(7):2533-2542.

PMID: 34146127 PMC: 8263412. DOI: 10.1007/s00436-021-07186-9.


Meta-analysis of the prevalence of Echinococcus in dogs in China from 2010 to 2019.

Gong Q, Ge G, Wang Q, Tian T, Liu F, Diao N PLoS Negl Trop Dis. 2021; 15(4):e0009268.

PMID: 33798191 PMC: 8018629. DOI: 10.1371/journal.pntd.0009268.


in Qinghai-Tibet plateau: population structure and confirmation of additional endemic areas.

Yan H, Li L, Li W, Zhu G, Li J, Wu Y Parasitology. 2021; 148(7):879-886.

PMID: 33757604 PMC: 11010220. DOI: 10.1017/S0031182021000512.


Genetic survey of cystic echinococcosis in farm animals in Oman.

AlKitani F, Baqir S, Mansoor M, AlRiyami S, Hussain M, Roberts D Trop Anim Health Prod. 2019; 52(1):331-337.

PMID: 31338730 DOI: 10.1007/s11250-019-02019-5.


Prevalence and Molecular Characterization of Echinococcus granulosus Sensu Stricto in Northern Xinjiang, China.

Guo B, Zhang Z, Zheng X, Guo Y, Guo G, Zhao L Korean J Parasitol. 2019; 57(2):153-159.

PMID: 31104407 PMC: 6526214. DOI: 10.3347/kjp.2019.57.2.153.


References
1.
Librado P, Rozas J . DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25(11):1451-2. DOI: 10.1093/bioinformatics/btp187. View

2.
Craig P . Epidemiology of human alveolar echinococcosis in China. Parasitol Int. 2005; 55 Suppl:S221-5. DOI: 10.1016/j.parint.2005.11.034. View

3.
Maggiore M, Albanese A, Gende L, Eguaras M, Denegri G, Elissondo M . Anthelmintic effect of Mentha spp. essential oils on Echinococcus granulosus protoscoleces and metacestodes. Parasitol Res. 2011; 110(3):1103-12. DOI: 10.1007/s00436-011-2595-x. View

4.
Sharbatkhori M, Harandi M, Mirhendi H, Hajialilo E, Kia E . Sequence analysis of cox1 and nad1 genes in Echinococcus granulosus G3 genotype in camels (Camelus dromedarius) from central Iran. Parasitol Res. 2010; 108(3):521-7. DOI: 10.1007/s00436-010-2092-7. View

5.
Huelsenbeck J, Ronquist F . MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001; 17(8):754-5. DOI: 10.1093/bioinformatics/17.8.754. View