» Articles » PMID: 22257906

Human Bone Marrow Adiposity is Linked with Serum Lipid Levels Not T1-diabetes

Overview
Specialty Endocrinology
Date 2012 Jan 20
PMID 22257906
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Increased marrow adiposity is often associated with bone loss. Little is known about the regulation of marrow adiposity in humans. Marrow adiposity is increased in several mouse models including type I (T1)-diabetic mice, which also display bone loss. However, the impact of metabolic disease on marrow adiposity in humans has yet to be examined. This study measured bone marrow adiposity levels with iterative decomposition of water and fat with echo asymmetry and least-squares estimation magnetic resonance imaging and determined their relationship with T1-diabetes, bone mineral density (BMD), and serum lipid levels. Participants were adult T1-diabetic patients (glycosylated hemoglobin averaging 7.70%±0.4%) and age- and body-mass-index-matched nondiabetic subjects. Consistent with previous reports, serum osteocalcin levels were lower in subjects with T1-diabetes compared to controls (reaching statistical significance in females) and negatively correlated with disease duration (r=-0.50, P<.01). Furthermore, femur neck BMD inversely correlated with diabetes severity (r=-0.417, P<.05). While marrow adiposity was not altered by T1-diabetes, there was a striking positive correlation between vertebral, femur, and tibia marrow adiposity and serum lipid levels (low-density lipoprotein, total cholesterol, cholesterol:high-density lipoprotein ratio, and triglyceride; r≥0.383), reaching a significance of P<.001 in some comparisons. Marrow adiposity also displayed strong intrasubject correlations at multiple bone sites (r≥0.411, P<.05), increased with age (r=0.410, P<.05 at vertebral sites), and was reciprocally related to bone density (r≥-0.378, P<.05). Taken together, our data suggest that marrow adiposity may be an indicator of elevated serum lipid levels and decreased bone density.

Citing Articles

The assessment of marrow adiposity in type 1 diabetic rabbits through magnetic resonance spectroscopy is linked to bone resorption.

Li W, Wang W, Zhang M, Chen Q, Li F, Li S Front Endocrinol (Lausanne). 2025; 15:1518656.

PMID: 39926390 PMC: 11803209. DOI: 10.3389/fendo.2024.1518656.


Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Liu H, Liu L, Rosen C Curr Obes Rep. 2025; 14(1):9.

PMID: 39808256 DOI: 10.1007/s13679-024-00594-9.


Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK Biobank.

Xu W, Mesa-Eguiagaray I, Morris D, Wang C, Gray C, Sjostrom S Nat Commun. 2025; 16(1):99.

PMID: 39747859 PMC: 11697225. DOI: 10.1038/s41467-024-55422-4.


Function and Regulation of Bone Marrow Adipose Tissue in Health and Disease: State of the Field and Clinical Considerations.

Zhang X, Tian L, Majumdar A, Scheller E Compr Physiol. 2024; 14(3):5521-5579.

PMID: 39109972 PMC: 11725182. DOI: 10.1002/cphy.c230016.


Associations of marrow fat fraction with MR imaging based trabecular bone microarchitecture in first-time diagnosed type 1 diabetes mellitus.

Li W, Wang W, Zhang M, Chen Q, Li S Front Endocrinol (Lausanne). 2024; 15:1287591.

PMID: 38774224 PMC: 11106440. DOI: 10.3389/fendo.2024.1287591.