» Articles » PMID: 22247557

Regulation of Insulin Signaling and Glucose Transporter 4 (GLUT4) Exocytosis by Phosphatidylinositol 3,4,5-trisphosphate (PIP3) Phosphatase, Skeletal Muscle, and Kidney Enriched Inositol Polyphosphate Phosphatase (SKIP)

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2012 Jan 17
PMID 22247557
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP(3) and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.

Citing Articles

Modulating PAK1: Accessory Proteins as Promising Therapeutic Targets.

Mirzaiebadizi A, Shafabakhsh R, Ahmadian M Biomolecules. 2025; 15(2).

PMID: 40001545 PMC: 11852631. DOI: 10.3390/biom15020242.


Study of the Effects of Deuterium-Depleted Water on the Expression of GLUT4 and Insulin Resistance in the Muscle Cell Line C2C12.

Kondo M, Sawada K, Matsuda Y, Abe M, Sanechika N, Takanashi Y Biomedicines. 2024; 12(8).

PMID: 39200235 PMC: 11351524. DOI: 10.3390/biomedicines12081771.


Mechanism of muscle atrophy in a normal-weight rat model of type 2 diabetes established by using a soft-pellet diet.

Akieda-Asai S, Ma H, Han W, Nagata J, Yamaguchi F, Date Y Sci Rep. 2024; 14(1):7670.

PMID: 38561446 PMC: 10984920. DOI: 10.1038/s41598-024-57727-2.


The Comparative Effects of Myo-Inositol and Metformin Therapy on the Clinical and Biochemical Parameters of Women of Normal Weight Suffering from Polycystic Ovary Syndrome.

Gudovic A, Bukumiric Z, Milincic M, Pupovac M, Andjic M, Ivanovic K Biomedicines. 2024; 12(2).

PMID: 38397951 PMC: 10886614. DOI: 10.3390/biomedicines12020349.


Myo-Inositol and D-Chiro-Inositol as Modulators of Ovary Steroidogenesis: A Narrative Review.

Bizzarri M, Monti N, Piombarolo A, Angeloni A, Verna R Nutrients. 2023; 15(8).

PMID: 37111094 PMC: 10145676. DOI: 10.3390/nu15081875.


References
1.
Nakashima N, Sharma P, Imamura T, Bookstein R, Olefsky J . The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes. J Biol Chem. 2000; 275(17):12889-95. DOI: 10.1074/jbc.275.17.12889. View

2.
Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar S, Kahn B, Wu H . Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol. 2005; 25(6):2498-510. PMC: 1061603. DOI: 10.1128/MCB.25.6.2498-2510.2005. View

3.
Saltiel A . New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001; 104(4):517-29. DOI: 10.1016/s0092-8674(01)00239-2. View

4.
Sasaoka T, Hori H, Wada T, Ishiki M, HARUTA T, Ishihara H . SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia. 2001; 44(10):1258-67. DOI: 10.1007/s001250100645. View

5.
Ijuin T, Yu Y, Mizutani K, Pao A, Tateya S, Tamori Y . Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol. 2008; 28(17):5184-95. PMC: 2519744. DOI: 10.1128/MCB.01990-06. View