» Articles » PMID: 22244760

Computational Reconstruction of Multidomain Proteins Using Atomic Force Microscopy Data

Overview
Journal Structure
Publisher Cell Press
Date 2012 Jan 17
PMID 22244760
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Classical structural biology techniques face a great challenge to determine the structure at the atomic level of large and flexible macromolecules. We present a novel methodology that combines high-resolution AFM topographic images with atomic coordinates of proteins to assemble very large macromolecules or particles. Our method uses a two-step protocol: atomic coordinates of individual domains are docked beneath the molecular surface of the large macromolecule, and then each domain is assembled using a combinatorial search. The protocol was validated on three test cases: a simulated system of antibody structures; and two experimentally based test cases: Tobacco mosaic virus, a rod-shaped virus; and Aquaporin Z, a bacterial membrane protein. We have shown that AFM-intermediate resolution topography and partial surface data are useful constraints for building macromolecular assemblies. The protocol is applicable to multicomponent structures connected in the polypeptide chain or as disjoint molecules. The approach effectively increases the resolution of AFM beyond topographical information down to atomic-detail structures.

Citing Articles

Modeling Conformational Transitions of Biomolecules from Atomic Force Microscopy Images using Normal Mode Analysis.

Wu X, Miyashita O, Tama F J Phys Chem B. 2024; 128(39):9363-9372.

PMID: 39319845 PMC: 11457880. DOI: 10.1021/acs.jpcb.4c04189.


BioAFMviewer software for simulation atomic force microscopy of molecular structures and conformational dynamics.

Amyot R, Kodera N, Flechsig H J Struct Biol X. 2023; 7:100086.

PMID: 36865763 PMC: 9972558. DOI: 10.1016/j.yjsbx.2023.100086.


Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images.

Ogane T, Noshiro D, Ando T, Yamashita A, Sugita Y, Matsunaga Y PLoS Comput Biol. 2022; 18(12):e1010384.

PMID: 36580448 PMC: 9833559. DOI: 10.1371/journal.pcbi.1010384.


Recent advances in RNA structurome.

Xu B, Zhu Y, Cao C, Chen H, Jin Q, Li G Sci China Life Sci. 2022; 65(7):1285-1324.

PMID: 35717434 PMC: 9206424. DOI: 10.1007/s11427-021-2116-2.


Inferring Conformational State of Myosin Motor in an Atomic Force Microscopy Image Flexible Fitting Molecular Simulations.

Fuchigami S, Takada S Front Mol Biosci. 2022; 9:882989.

PMID: 35573735 PMC: 9100425. DOI: 10.3389/fmolb.2022.882989.


References
1.
Lv Z, Wang J, Chen G, Deng L . Imaging recognition events between human IgG and rat anti-human IgG by atomic force microscopy. Int J Biol Macromol. 2010; 47(5):661-7. DOI: 10.1016/j.ijbiomac.2010.08.017. View

2.
Kawabata T . Multiple subunit fitting into a low-resolution density map of a macromolecular complex using a gaussian mixture model. Biophys J. 2008; 95(10):4643-58. PMC: 2576401. DOI: 10.1529/biophysj.108.137125. View

3.
Rochel N, Ciesielski F, Godet J, Moman E, Roessle M, Peluso-Iltis C . Common architecture of nuclear receptor heterodimers on DNA direct repeat elements with different spacings. Nat Struct Mol Biol. 2011; 18(5):564-70. DOI: 10.1038/nsmb.2054. View

4.
Szymczyna B, Taurog R, Young M, Snyder J, Johnson J, Williamson J . Synergy of NMR, computation, and X-ray crystallography for structural biology. Structure. 2009; 17(4):499-507. PMC: 2705668. DOI: 10.1016/j.str.2009.03.001. View

5.
Davies E, Teng K, Conlan R, Wilks S . Ultra-high resolution imaging of DNA and nucleosomes using non-contact atomic force microscopy. FEBS Lett. 2005; 579(7):1702-6. DOI: 10.1016/j.febslet.2005.02.028. View