» Articles » PMID: 22238427

Characterization of MADS-domain Transcription Factor Complexes in Arabidopsis Flower Development

Abstract

Floral organs are specified by the combinatorial action of MADS-domain transcription factors, yet the mechanisms by which MADS-domain proteins activate or repress the expression of their target genes and the nature of their cofactors are still largely unknown. Here, we show using affinity purification and mass spectrometry that five major floral homeotic MADS-domain proteins (AP1, AP3, PI, AG, and SEP3) interact in floral tissues as proposed in the "floral quartet" model. In vitro studies confirmed a flexible composition of MADS-domain protein complexes depending on relative protein concentrations and DNA sequence. In situ bimolecular fluorescent complementation assays demonstrate that MADS-domain proteins interact during meristematic stages of flower development. By applying a targeted proteomics approach we were able to establish a MADS-domain protein interactome that strongly supports a mechanistic link between MADS-domain proteins and chromatin remodeling factors. Furthermore, members of other transcription factor families were identified as interaction partners of floral MADS-domain proteins suggesting various specific combinatorial modes of action.

Citing Articles

SWI/SNF-type complexes-transcription factor interplay: a key regulatory interaction.

Maassen A, Steciuk J, Wilga M, Szurmak J, Garbicz D, Sarnowska E Cell Mol Biol Lett. 2025; 30(1):30.

PMID: 40065228 PMC: 11895388. DOI: 10.1186/s11658-025-00704-y.


Genome-Wide Investigation of Genes in Flower Development and Environmental Acclimation of (Jack) Voigt.

Zhang L, Yang Y, Zhang Y, Yang F Int J Mol Sci. 2025; 26(4).

PMID: 40004145 PMC: 11855919. DOI: 10.3390/ijms26041680.


WRKY transcription factor MdWRKY71 regulates flowering time in apple.

Su M, Yang Y, Lin C, Liu W, Chen X Plant Mol Biol. 2025; 115(2):32.

PMID: 39945922 DOI: 10.1007/s11103-024-01544-8.


Arabidopsis thaliana Zn transporter genes ZIP3 and ZIP5 provide the main Zn uptake route and act redundantly to face Zn deficiency.

Ochoa Tufino V, Almira Casellas M, van Duynhoven A, Flis P, Salt D, Schat H Plant J. 2025; 121(3):e17251.

PMID: 39930616 PMC: 11811486. DOI: 10.1111/tpj.17251.


Uncoupling FRUITFULL's functions through modification of a protein motif identified by co-ortholog analysis.

Thoris K, Marrero M, Fiers M, Lai X, Zahn I, Jiang X Nucleic Acids Res. 2024; 52(21):13290-13304.

PMID: 39475190 PMC: 11602133. DOI: 10.1093/nar/gkae963.


References
1.
Kaufmann K, Muino J, Jauregui R, Airoldi C, Smaczniak C, Krajewski P . Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009; 7(4):e1000090. PMC: 2671559. DOI: 10.1371/journal.pbio.1000090. View

2.
Liu C, Xi W, Shen L, Tan C, Yu H . Regulation of floral patterning by flowering time genes. Dev Cell. 2009; 16(5):711-22. DOI: 10.1016/j.devcel.2009.03.011. View

3.
Theissen G, Saedler H . Plant biology. Floral quartets. Nature. 2001; 409(6819):469-71. DOI: 10.1038/35054172. View

4.
West A, Causier B, Davies B, Sharrocks A . DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Res. 1998; 26(23):5277-87. PMC: 148020. DOI: 10.1093/nar/26.23.5277. View

5.
Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C . Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 2004; 40(3):428-38. DOI: 10.1111/j.1365-313X.2004.02219.x. View