» Articles » PMID: 22230817

Computer Simulations: Tools for Population and Evolutionary Genetics

Overview
Journal Nat Rev Genet
Specialty Genetics
Date 2012 Jan 11
PMID 22230817
Citations 95
Authors
Affiliations
Soon will be listed here.
Abstract

Computer simulations are excellent tools for understanding the evolutionary and genetic consequences of complex processes whose interactions cannot be analytically predicted. Simulations have traditionally been used in population genetics by a fairly small community with programming expertise, but the recent availability of dozens of sophisticated, customizable software packages for simulation now makes simulation an accessible option for researchers in many fields. The in silico genetic data produced by simulations, along with greater availability of population-genomics data, are transforming genetic epidemiology, anthropology, evolutionary and population genetics and conservation. In this Review of the state-of-the-art of simulation software, we identify applications of simulations, evaluate simulator capabilities, provide a guide for their use and summarize future directions.

Citing Articles

Optimization of Microsatellite Multiplex PCRs for Triploidy Verification and Genetic Diversity Assessment in the Pacific Oyster, Crassostrea gigas.

Zheng H, Liang Y, Cheng G, Zhou J, Bi W, Hu H Mar Biotechnol (NY). 2025; 27(2):55.

PMID: 39982523 DOI: 10.1007/s10126-025-10432-1.


Fast simulation of identity-by-descent segments.

Temple S, Browning S, Thompson E bioRxiv. 2025; .

PMID: 39829821 PMC: 11741331. DOI: 10.1101/2024.12.13.628449.


TraitTrainR: accelerating large-scale simulation under models of continuous trait evolution.

Lozano J, Duncan M, McKenna D, Castoe T, DeGiorgio M, Adams R Bioinform Adv. 2025; 5(1):vbae196.

PMID: 39758830 PMC: 11696700. DOI: 10.1093/bioadv/vbae196.


Dealing With the Complexity of Effective Population Size in Conservation Practice.

Fedorca A, Mergeay J, Akinyele A, Albayrak T, Biebach I, Brambilla A Evol Appl. 2024; 17(12):e70031.

PMID: 39679127 PMC: 11645448. DOI: 10.1111/eva.70031.


Population size rescaling significantly biases outcomes of forward-in-time population genetic simulations.

Dabi A, Schrider D Genetics. 2024; 229(1):1-57.

PMID: 39503241 PMC: 11708920. DOI: 10.1093/genetics/iyae180.


References
1.
Servedio M . The evolution of premating isolation: local adaptation and natural and sexual selection against hybrids. Evolution. 2004; 58(5):913-24. DOI: 10.1111/j.0014-3820.2004.tb00425.x. View

2.
Daetwyler H, Villanueva B, Woolliams J . Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One. 2008; 3(10):e3395. PMC: 2561058. DOI: 10.1371/journal.pone.0003395. View

3.
Sellers T, Weaver T, Phillips B, Altmann M, Rich S . Environmental factors can confound identification of a major gene effect: results from a segregation analysis of a simulated population of lung cancer families. Genet Epidemiol. 1998; 15(3):251-62. DOI: 10.1002/(SICI)1098-2272(1998)15:3<251::AID-GEPI4>3.0.CO;2-7. View

4.
Estoup A, Baird S, Ray N, Currat M, Cornuet J, Santos F . Combining genetic, historical and geographical data to reconstruct the dynamics of bioinvasions: application to the cane toad Bufo marinus. Mol Ecol Resour. 2011; 10(5):886-901. DOI: 10.1111/j.1755-0998.2010.02882.x. View

5.
Carvajal-Rodriguez A . Simulation of genes and genomes forward in time. Curr Genomics. 2010; 11(1):58-61. PMC: 2851118. DOI: 10.2174/138920210790218007. View