» Articles » PMID: 22210854

Affymetrix GeneChip Microarray Preprocessing for Multivariate Analyses

Overview
Journal Brief Bioinform
Specialty Biology
Date 2012 Jan 3
PMID 22210854
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Affymetrix GeneChip microarrays are the most widely used high-throughput technology to measure gene expression, and a wide variety of preprocessing methods have been developed to transform probe intensities reported by a microarray scanner into gene expression estimates. There have been numerous comparisons of these preprocessing methods, focusing on the most common analyses-detection of differential expression and gene or sample clustering. Recently, more complex multivariate analyses, such as gene co-expression, differential co-expression, gene set analysis and network modeling, are becoming more common; however, the same preprocessing methods are typically applied. In this article, we examine the effect of preprocessing methods on some of these multivariate analyses and provide guidance to the user as to which methods are most appropriate.

Citing Articles

Comparing preprocessing strategies for 3D-Gene microarray data of extracellular vesicle-derived miRNAs.

Takemoto Y, Ito D, Komori S, Kishimoto Y, Yamada S, Hashizume A BMC Bioinformatics. 2024; 25(1):221.

PMID: 38902629 PMC: 11188187. DOI: 10.1186/s12859-024-05840-4.


Robust normalization and transformation techniques for constructing gene coexpression networks from RNA-seq data.

Johnson K, Krishnan A Genome Biol. 2022; 23(1):1.

PMID: 34980209 PMC: 8721966. DOI: 10.1186/s13059-021-02568-9.


SLC25A24 gene methylation and gray matter volume in females with and without conduct disorder: an exploratory epigenetic neuroimaging study.

Farrow E, Chiocchetti A, Rogers J, Pauli R, Raschle N, Gonzalez-Madruga K Transl Psychiatry. 2021; 11(1):492.

PMID: 34561420 PMC: 8463588. DOI: 10.1038/s41398-021-01609-y.


Genome-Wide Association Study in African Americans with Acute Respiratory Distress Syndrome Identifies the Selectin P Ligand Gene as a Risk Factor.

Bime C, Pouladi N, Sammani S, Batai K, Casanova N, Zhou T Am J Respir Crit Care Med. 2018; 197(11):1421-1432.

PMID: 29425463 PMC: 6005557. DOI: 10.1164/rccm.201705-0961OC.


Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients.

Cangelosi D, Muselli M, Parodi S, Blengio F, Becherini P, Versteeg R BMC Bioinformatics. 2014; 15 Suppl 5:S4.

PMID: 25078098 PMC: 4095004. DOI: 10.1186/1471-2105-15-S5-S4.


References
1.
Wu Z . A review of statistical methods for preprocessing oligonucleotide microarrays. Stat Methods Med Res. 2010; 18(6):533-41. PMC: 3152825. DOI: 10.1177/0962280209351924. View

2.
Lin Y, Jhunjhunwala S, Benner C, Heinz S, Welinder E, Mansson R . A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat Immunol. 2010; 11(7):635-43. PMC: 2896911. DOI: 10.1038/ni.1891. View

3.
Obayashi T, Kinoshita K . Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res. 2009; 16(5):249-60. PMC: 2762411. DOI: 10.1093/dnares/dsp016. View

4.
McCall M, Irizarry R . Consolidated strategy for the analysis of microarray spike-in data. Nucleic Acids Res. 2008; 36(17):e108. PMC: 2553586. DOI: 10.1093/nar/gkn430. View

5.
Irizarry R, Bolstad B, Collin F, Cope L, Hobbs B, Speed T . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003; 31(4):e15. PMC: 150247. DOI: 10.1093/nar/gng015. View