» Articles » PMID: 22128166

Crystal Structure of Human β-galactosidase: Structural Basis of Gm1 Gangliosidosis and Morquio B Diseases

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2011 Dec 1
PMID 22128166
Citations 55
Authors
Affiliations
Soon will be listed here.
Abstract

G(M1) gangliosidosis and Morquio B are autosomal recessive lysosomal storage diseases associated with a neurodegenerative disorder or dwarfism and skeletal abnormalities, respectively. These diseases are caused by deficiencies in the lysosomal enzyme β-d-galactosidase (β-Gal), which lead to accumulations of the β-Gal substrates, G(M1) ganglioside, and keratan sulfate. β-Gal is an exoglycosidase that catalyzes the hydrolysis of terminal β-linked galactose residues. This study shows the crystal structures of human β-Gal in complex with its catalytic product galactose or with its inhibitor 1-deoxygalactonojirimycin. Human β-Gal is composed of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2. To gain structural insight into the molecular defects of β-Gal in the above diseases, the disease-causing mutations were mapped onto the three-dimensional structure. Finally, the possible causes of the diseases are discussed.

Citing Articles

Clinical and genetic analysis of a Chinese family with GM1 gangliosidosis caused by a novel mutation in GLB1 gene.

Zhang B, Huang X, Lu X, Huang H, Wu Y Front Pediatr. 2025; 13:1507098.

PMID: 39902059 PMC: 11788308. DOI: 10.3389/fped.2025.1507098.


A  transgene with enhanced therapeutic potential for the preclinical development of  gene therapy to treat mucopolysaccharidosis type IVB.

Crippa S, Alberti G, Passerini L, Savoia E, Mancino M, De Ponti G Mol Ther Methods Clin Dev. 2024; 32(3):101313.

PMID: 39282079 PMC: 11399592. DOI: 10.1016/j.omtm.2024.101313.


Mutations in Glycosyltransferases and Glycosidases: Implications for Associated Diseases.

Gu X, Kovacs A, Myung Y, Ascher D Biomolecules. 2024; 14(4).

PMID: 38672513 PMC: 11048727. DOI: 10.3390/biom14040497.


Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors.

Rudinskiy M, Pons-Vizcarra M, Solda T, Fregno I, Bergmann T, Ruano A PLoS One. 2023; 18(11):e0294437.

PMID: 38019733 PMC: 10686464. DOI: 10.1371/journal.pone.0294437.


Function and Structure of GH35 β-Galactosidase LBCZ_0230 with High Hydrolytic Activity to Lacto--biose I and Galacto--biose.

Saburi W, Ota T, Kato K, Tagami T, Yamashita K, Yao M J Appl Glycosci (1999). 2023; 70(2):43-52.

PMID: 37599861 PMC: 10432377. DOI: 10.5458/jag.jag.JAG-2022_0014.


References
1.
. The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 1994; 50(Pt 5):760-3. DOI: 10.1107/S0907444994003112. View

2.
Montanier C, Lammerts van Bueren A, Dumon C, Flint J, Correia M, Prates J . Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function. Proc Natl Acad Sci U S A. 2009; 106(9):3065-70. PMC: 2651348. DOI: 10.1073/pnas.0808972106. View

3.
Okumiya T, Sakuraba H, Kase R, Sugiura T . Imbalanced substrate specificity of mutant beta-galactosidase in patients with Morquio B disease. Mol Genet Metab. 2003; 78(1):51-8. DOI: 10.1016/s1096-7192(02)00199-3. View

4.
Jacobson R, Zhang X, DuBose R, Matthews B . Three-dimensional structure of beta-galactosidase from E. coli. Nature. 1994; 369(6483):761-6. DOI: 10.1038/369761a0. View

5.
Brunetti-Pierri N, Scaglia F . GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab. 2008; 94(4):391-396. DOI: 10.1016/j.ymgme.2008.04.012. View