» Articles » PMID: 22121159

Modelling Time Course Gene Expression Data with Finite Mixtures of Linear Additive Models

Overview
Journal Bioinformatics
Specialty Biology
Date 2011 Nov 29
PMID 22121159
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: A model class of finite mixtures of linear additive models is presented. The component-specific parameters in the regression models are estimated using regularized likelihood methods. The advantages of the regularization are that (i) the pre-specified maximum degrees of freedom for the splines is less crucial than for unregularized estimation and that (ii) for each component individually a suitable degree of freedom is selected in an automatic way. The performance is evaluated in a simulation study with artificial data as well as on a yeast cell cycle dataset of gene expression levels over time.

Availability: The latest release version of the R package flexmix is available from CRAN (http://cran.r-project.org/).

Citing Articles

Hybrid-controlled neurofuzzy networks analysis resulting in genetic regulatory networks reconstruction.

Manshaei R, Bidari P, Aliyari Shoorehdeli M, Feizi A, Lohrasebi T, Malboobi M ISRN Bioinform. 2015; 2012:419419.

PMID: 25969749 PMC: 4393070. DOI: 10.5402/2012/419419.


Bayesian approach to single-cell differential expression analysis.

Kharchenko P, Silberstein L, Scadden D Nat Methods. 2014; 11(7):740-2.

PMID: 24836921 PMC: 4112276. DOI: 10.1038/nmeth.2967.


A temporal switch model for estimating transcriptional activity in gene expression.

Jenkins D, Finkenstadt B, Rand D Bioinformatics. 2013; 29(9):1158-65.

PMID: 23479351 PMC: 3634189. DOI: 10.1093/bioinformatics/btt111.

References
1.
Maugis C, Celeux G, Martin-Magniette M . Variable selection for clustering with Gaussian mixture models. Biometrics. 2009; 65(3):701-9. DOI: 10.1111/j.1541-0420.2008.01160.x. View

2.
Ng S, McLachlan G, Wang K, Ben-Tovim Jones L, Ng S . A mixture model with random-effects components for clustering correlated gene-expression profiles. Bioinformatics. 2006; 22(14):1745-52. DOI: 10.1093/bioinformatics/btl165. View

3.
Androulakis I, Yang E, Almon R . Analysis of time-series gene expression data: methods, challenges, and opportunities. Annu Rev Biomed Eng. 2007; 9:205-28. PMC: 4181347. DOI: 10.1146/annurev.bioeng.9.060906.151904. View

4.
Scharl T, Gru B, Leisch F . Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects. Bioinformatics. 2009; 26(3):370-7. DOI: 10.1093/bioinformatics/btp686. View

5.
Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, Eisen M . Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998; 9(12):3273-97. PMC: 25624. DOI: 10.1091/mbc.9.12.3273. View