» Articles » PMID: 17341157

Analysis of Time-series Gene Expression Data: Methods, Challenges, and Opportunities

Overview
Publisher Annual Reviews
Date 2007 Mar 8
PMID 17341157
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

Monitoring the change in expression patterns over time provides the distinct possibility of unraveling the mechanistic drivers characterizing cellular responses. Gene arrays measuring the level of mRNA expression of thousands of genes simultaneously provide a method of high-throughput data collection necessary for obtaining the scope of data required for understanding the complexities of living organisms. Unraveling the coherent complex structures of transcriptional dynamics is the goal of a large family of computational methods aiming at upgrading the information content of time-course gene expression data. In this review, we summarize the qualitative characteristics of these approaches, discuss the main challenges that this type of complex data present, and, finally, explore the opportunities in the context of developing mechanistic models of cellular response.

Citing Articles

Biclustering data analysis: a comprehensive survey.

Castanho E, Aidos H, Madeira S Brief Bioinform. 2024; 25(4).

PMID: 39007596 PMC: 11247412. DOI: 10.1093/bib/bbae342.


GeTeSEPdb: A comprehensive database and online tool for the identification and analysis of gene profiles with temporal-specific expression patterns.

Kuang N, Ma Q, Zheng X, Meng X, Zhai Z, Li Q Comput Struct Biotechnol J. 2024; 23:2488-2496.

PMID: 38939556 PMC: 11208770. DOI: 10.1016/j.csbj.2024.06.003.


Gene regulatory network analysis identifies MYL1, MDH2, GLS, and TRIM28 as the principal proteins in the response of mesenchymal stem cells to Mg ions.

Nourisa J, Passemiers A, Shakeri F, Omidi M, Helmholz H, Raimondi D Comput Struct Biotechnol J. 2024; 23:1773-1785.

PMID: 38689715 PMC: 11058716. DOI: 10.1016/j.csbj.2024.04.033.


Transcriptome Profiling Unveils Key Genes Regulating the Growth and Development of Yangzhou Goose Knob.

Xu X, Fan S, Ji W, Qi S, Liu L, Cao Z Int J Mol Sci. 2024; 25(8).

PMID: 38673752 PMC: 11050116. DOI: 10.3390/ijms25084166.


A clustering procedure for three-way RNA sequencing data using data transformations and matrix-variate Gaussian mixture models.

Scharl T, Grun B BMC Bioinformatics. 2024; 25(1):90.

PMID: 38429687 PMC: 10905927. DOI: 10.1186/s12859-024-05717-6.


References
1.
Simon I, Barnett J, Hannett N, Harbison C, Rinaldi N, Volkert T . Serial regulation of transcriptional regulators in the yeast cell cycle. Cell. 2001; 106(6):697-708. DOI: 10.1016/s0092-8674(01)00494-9. View

2.
Bussemaker H, Li H, Siggia E . Regulatory element detection using correlation with expression. Nat Genet. 2001; 27(2):167-71. DOI: 10.1038/84792. View

3.
Bowtell D . Options available--from start to finish--for obtaining expression data by microarray. Nat Genet. 1999; 21(1 Suppl):25-32. DOI: 10.1038/4455. View

4.
Liao J, Boscolo R, Yang Y, Tran L, Sabatti C, Roychowdhury V . Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci U S A. 2003; 100(26):15522-7. PMC: 307600. DOI: 10.1073/pnas.2136632100. View

5.
Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005; 102(43):15545-50. PMC: 1239896. DOI: 10.1073/pnas.0506580102. View