» Articles » PMID: 22105359

The Unfolded Protein Response Controls Induction and Activation of ADAM17/TACE by Severe Hypoxia and ER Stress

Overview
Journal Oncogene
Date 2011 Nov 23
PMID 22105359
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

The family of ADAM (a disintegrin and metalloproteinase) proteins has been implicated in tumor initiation and progression. ADAM17/tumor necrosis factor-α (TNFα)-converting enzyme (TACE) has been initially recognized to release TNFα as well as its receptors (TNFRs) from the membrane. ADAM17, TNFα and TNFR have been found upregulated in cancer patients, although the underlying mechanisms remain largely unknown. As hypoxia is a hallmark of cancer that can lead to severe stress conditions accumulating in endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), we investigated the role of these stress conditions in the regulation of ADAM17 and release of TNFR1.We found that severe hypoxia induced ADAM17 expression and activity. Although hypoxia-inducible factor 1α (HIF1α) was important to maintain basal ADAM17 mRNA levels during moderate hypoxia, it was not sufficient to induce ADAM17 levels under severe hypoxia. Instead, we found that ADAM17 induction by severe hypoxia can be mimicked by ER stressors such as Thapsigargin and occurs as a consequence of the activation of the PERK/eIF2α/ATF4 and activating transcription factor 6 (ATF6) arms of UPR in several tumor cell lines. ADAM17 expression was also increased in xenografts displaying ER stress because of treatment with the vascular endothelial growth factor (VEGF) inhibitory antibody Bevacizumab. Additionally, severe hypoxia and ER stress activated ADAM17 and ectodomain shedding of TNFR1 involving mitogen-activated protein (MAP) kinases and reactive oxygen species (ROS). Collectively, these results show that ADAM17 is a novel UPR-regulated gene in response to severe hypoxia and ER stress, which is actively involved in the release of TNFR1 under these conditions. These data provide a novel link between severe hypoxic stress conditions and inflammation in the tumor environment.

Citing Articles

Acute hyperglycemia induces podocyte apoptosis by monocyte TNF-α release, a process attenuated by vitamin D and GLP-1 receptor agonists.

Zhang R, Oh J, Wice B, Dusso A, Bernal-Mizrachi C J Steroid Biochem Mol Biol. 2025; 247:106676.

PMID: 39818342 PMC: 11859504. DOI: 10.1016/j.jsbmb.2025.106676.


Discovery of Carbonic Anhydrase 9 as a Novel CLEC2 Ligand in a Cellular Interactome Screen.

Hoffmann S, Berger B, Lucas L, Schiele F, Park J Cells. 2025; 13(24.

PMID: 39768175 PMC: 11674933. DOI: 10.3390/cells13242083.


iPSC-derived NK cells expressing high-affinity IgG Fc receptor fusion CD64/16A to mediate flexible, multi-tumor antigen targeting for lymphoma.

Dixon K, Snyder K, Khaw M, Hullsiek R, Davis Z, Matson A Front Immunol. 2024; 15:1407567.

PMID: 39100677 PMC: 11294090. DOI: 10.3389/fimmu.2024.1407567.


iPSC-derived natural killer cells expressing the FcγR fusion CD64/16A can be armed with antibodies for multitumor antigen targeting.

Snyder K, Dixon K, Davis Z, Hosking M, Hart G, Khaw M J Immunother Cancer. 2023; 11(12).

PMID: 38056893 PMC: 10711901. DOI: 10.1136/jitc-2023-007280.


Carbonic Anhydrase IX in Tumor Tissue and Plasma of Breast Cancer Patients: Reliable Biomarker of Hypoxia and Prognosis.

Rezuchova I, Bartosova M, Belvoncikova P, Takacova M, Zatovicova M, Jelenska L Int J Mol Sci. 2023; 24(5).

PMID: 36901756 PMC: 10002431. DOI: 10.3390/ijms24054325.