» Articles » PMID: 22101937

Structural Basis for Dimethylarginine Recognition by the Tudor Domains of Human SMN and SPF30 Proteins

Overview
Date 2011 Nov 22
PMID 22101937
Citations 102
Authors
Affiliations
Soon will be listed here.
Abstract

Arginine dimethylation plays critical roles in the assembly of ribonucleoprotein complexes in pre-mRNA splicing and piRNA pathways. We report solution structures of SMN and SPF30 Tudor domains bound to symmetric and asymmetric dimethylated arginine (DMA) that is inherent in the RNP complexes. An aromatic cage in the Tudor domain mediates dimethylarginine recognition by electrostatic stabilization through cation-π interactions. Distinct from extended Tudor domains, dimethylarginine binding by the SMN and SPF30 Tudor domains is independent of proximal residues in the ligand. Yet, enhanced micromolar affinities are obtained by external cooperativity when multiple methylation marks are presented in arginine- and glycine-rich peptide ligands. A hydrogen bond network in the SMN Tudor domain, including Glu134 and a tyrosine hydroxyl of the aromatic cage, enhances cation-π interactions and is impaired by a mutation causing an E134K substitution associated with spinal muscular atrophy. Our structural analysis enables the design of an optimized binding pocket and the prediction of DMA binding properties of Tudor domains.

Citing Articles

Epigenetic Regulation Via Electrical Forces.

McCaig C Rev Physiol Biochem Pharmacol. 2025; 187():251-272.

PMID: 39838016 DOI: 10.1007/978-3-031-68827-0_15.


Predicting fragment binding modes using customized Lennard-Jones potentials in short molecular dynamics simulations.

Vorreiter C, Robaa D, Sippl W Comput Struct Biotechnol J. 2025; 27():102-116.

PMID: 39816914 PMC: 11733276. DOI: 10.1016/j.csbj.2024.12.017.


Protein-Ligand Interaction Energies from Quantum-Chemical Fragmentation Methods: Upgrading the MFCC-Scheme with Many-Body Contributions.

Vornweg J, Jacob C J Phys Chem B. 2024; 128(47):11597-11606.

PMID: 39550698 PMC: 11613497. DOI: 10.1021/acs.jpcb.4c05645.


Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network.

Matera A, Steiner R, Mills C, McMichael B, Herring L, Garcia E Front RNA Res. 2024; 2.

PMID: 39492846 PMC: 11529804. DOI: 10.3389/frnar.2024.1448194.


R-Methylation in Plants: A Key Regulator of Plant Development and Response to the Environment.

Barre-Villeneuve C, Azevedo-Favory J Int J Mol Sci. 2024; 25(18).

PMID: 39337424 PMC: 11432338. DOI: 10.3390/ijms25189937.


References
1.
Kleywegt G . Crystallographic refinement of ligand complexes. Acta Crystallogr D Biol Crystallogr. 2006; 63(Pt 1):94-100. PMC: 2483469. DOI: 10.1107/S0907444906022657. View

2.
Cheng D, Cote J, Shaaban S, Bedford M . The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing. Mol Cell. 2007; 25(1):71-83. DOI: 10.1016/j.molcel.2006.11.019. View

3.
Lee , Yang , PARR . Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988; 37(2):785-789. DOI: 10.1103/physrevb.37.785. View

4.
Hu J, Bax A . Chi 1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNC gamma couplings in isotopically enriched proteins. J Biomol NMR. 1997; 9(3):323-8. DOI: 10.1023/a:1018691228238. View

5.
Renvoise B, Khoobarry K, Gendron M, Cibert C, Viollet L, Lefebvre S . Distinct domains of the spinal muscular atrophy protein SMN are required for targeting to Cajal bodies in mammalian cells. J Cell Sci. 2006; 119(Pt 4):680-92. DOI: 10.1242/jcs.02782. View