» Articles » PMID: 22081229

Parallel Bacterial Evolution Within Multiple Patients Identifies Candidate Pathogenicity Genes

Overview
Journal Nat Genet
Specialty Genetics
Date 2011 Nov 15
PMID 22081229
Citations 249
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial pathogens evolve during the infection of their human host(1-8), but separating adaptive and neutral mutations remains challenging(9-11). Here we identify bacterial genes under adaptive evolution by tracking recurrent patterns of mutations in the same pathogenic strain during the infection of multiple individuals. We conducted a retrospective study of a Burkholderia dolosa outbreak among subjects with cystic fibrosis, sequencing the genomes of 112 isolates collected from 14 individuals over 16 years. We find that 17 bacterial genes acquired nonsynonymous mutations in multiple individuals, which indicates parallel adaptive evolution. Mutations in these genes affect important pathogenic phenotypes, including antibiotic resistance and bacterial membrane composition and implicate oxygen-dependent regulation as paramount in lung infections. Several genes have not previously been implicated in pathogenesis and may represent new therapeutic targets. The identification of parallel molecular evolution as a pathogen spreads among multiple individuals points to the key selection forces it experiences within human hosts.

Citing Articles

Uniform bacterial genetic diversity along the guts of mice inoculated with human stool.

Wasney M, Briscoe L, Wolff R, Ghezzi H, Tropini C, Garud N bioRxiv. 2025; .

PMID: 39974986 PMC: 11838389. DOI: 10.1101/2025.01.28.635365.


Evaluation of antimicrobial susceptibility testing methods for complex isolates from people with and without cystic fibrosis.

Jorth P, Manuel C, McLemore T, Humphries R, Cole N, Schuetz A J Clin Microbiol. 2025; 63(2):e0148024.

PMID: 39840992 PMC: 11837569. DOI: 10.1128/jcm.01480-24.


Convergence of Hypervirulence and Multidrug-Resistance in Complex Isolates from Patients with COVID-19.

Du M, Chi C, Xiong L, Rong J, Yi M, Zhao Q Infect Drug Resist. 2025; 17:5855-5866.

PMID: 39741887 PMC: 11687121. DOI: 10.2147/IDR.S495676.


CRISPR-Cas spacer acquisition is a rare event in human gut microbiome.

Zhang A, Gaston J, Cardenas P, Zhao S, Gu X, Alm E Cell Genom. 2024; 5(1):100725.

PMID: 39719706 PMC: 11770219. DOI: 10.1016/j.xgen.2024.100725.


Genomic evidence of gut population diversity translocation in leukemia patients.

Marin J, Walewski V, Braun T, Dziri S, Magnan M, Denamur E mSphere. 2024; 9(10):e0053024.

PMID: 39365076 PMC: 11520291. DOI: 10.1128/msphere.00530-24.


References
1.
Kennemann L, Didelot X, Aebischer T, Kuhn S, Drescher B, Droege M . Helicobacter pylori genome evolution during human infection. Proc Natl Acad Sci U S A. 2011; 108(12):5033-8. PMC: 3064335. DOI: 10.1073/pnas.1018444108. View

2.
Smith E, Buckley D, Wu Z, Saenphimmachak C, Hoffman L, DArgenio D . Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006; 103(22):8487-92. PMC: 1482519. DOI: 10.1073/pnas.0602138103. View

3.
Sibley C, Parkins M, Rabin H, Duan K, Norgaard J, Surette M . A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A. 2008; 105(39):15070-5. PMC: 2567494. DOI: 10.1073/pnas.0804326105. View

4.
Elena S, Lenski R . Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003; 4(6):457-69. DOI: 10.1038/nrg1088. View

5.
Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D, Voigt B . Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog. 2010; 6(8):e1001078. PMC: 2928814. DOI: 10.1371/journal.ppat.1001078. View