Abbate C, Hu J, Albeck J
Essays Biochem. 2024; 68(3):273-281.
PMID: 39462995
PMC: 11576188.
DOI: 10.1042/EBC20240002.
Lu D, Yuan L, Ma X, Meng F, Xu D, Jia S
Heliyon. 2024; 10(10):e31452.
PMID: 38831826
PMC: 11145480.
DOI: 10.1016/j.heliyon.2024.e31452.
Siebieszuk A, Sejbuk M, Witkowska A
Int J Mol Sci. 2023; 24(22).
PMID: 38003359
PMC: 10671191.
DOI: 10.3390/ijms242216169.
Opalek M, Tutaj H, Pirog A, Smug B, Rutkowska J, Wloch-Salamon D
Cells. 2023; 12(12).
PMID: 37371078
PMC: 10297366.
DOI: 10.3390/cells12121608.
Rodl S, den Brave F, Raschle M, Kizmaz B, Lenhard S, Groh C
Life Sci Alliance. 2022; 6(1).
PMID: 36253107
PMC: 9579816.
DOI: 10.26508/lsa.202201526.
Genome-Wide Analysis of Yeast Metabolic Cycle through Metabolic Network Models Reveals Superiority of Integrated ATAC-seq Data over RNA-seq Data.
Cesur M, Cakir T, Pir P
mSystems. 2022; 7(3):e0134721.
PMID: 35695574
PMC: 9239220.
DOI: 10.1128/msystems.01347-21.
Multiple Rediscoveries and Misconceptions; the Yeast Metabolic Oscillation.
Murray D, Lloyd D
Function (Oxf). 2022; 2(5):zqab039.
PMID: 35330950
PMC: 8788767.
DOI: 10.1093/function/zqab039.
Autonomous clocks that regulate organelle biogenesis, cytoskeletal organization, and intracellular dynamics.
Mofatteh M, Echegaray-Iturra F, Alamban A, Ricca F, Bakshi A, Aydogan M
Elife. 2021; 10.
PMID: 34586070
PMC: 8480978.
DOI: 10.7554/eLife.72104.
Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast.
Yu R, Vorontsov E, Sihlbom C, Nielsen J
Elife. 2021; 10.
PMID: 33720010
PMC: 8016476.
DOI: 10.7554/eLife.65722.
Peroxiredoxins couple metabolism and cell division in an ultradian cycle.
Amponsah P, Yahya G, Zimmermann J, Mai M, Mergel S, Muhlhaus T
Nat Chem Biol. 2021; 17(4):477-484.
PMID: 33574615
DOI: 10.1038/s41589-020-00728-9.
Nuclear metabolism and the regulation of the epigenome.
Boon R, Silveira G, Mostoslavsky R
Nat Metab. 2020; 2(11):1190-1203.
PMID: 33046909
DOI: 10.1038/s42255-020-00285-4.
Analyzing Ribosome Remodeling in Health and Disease.
Petelski A, Slavov N
Proteomics. 2020; 20(17-18):e2000039.
PMID: 32820594
PMC: 7501214.
DOI: 10.1002/pmic.202000039.
Evidence for rate-dependent filtering of global extrinsic noise by biochemical reactions in mammalian cells.
Wu J, Han X, Zhai H, Yang T, Lin Y
Mol Syst Biol. 2020; 16(5):e9335.
PMID: 32407587
PMC: 7224485.
DOI: 10.15252/msb.20199335.
Metabolic cost of rapid adaptation of single yeast cells.
Woronoff G, Nghe P, Baudry J, Boitard L, Braun E, Griffiths A
Proc Natl Acad Sci U S A. 2020; 117(20):10660-10666.
PMID: 32371488
PMC: 7245094.
DOI: 10.1073/pnas.1913767117.
Differential scaling between G1 protein production and cell size dynamics promotes commitment to the cell division cycle in budding yeast.
Litsios A, Huberts D, Terpstra H, Guerra P, Schmidt A, Buczak K
Nat Cell Biol. 2019; 21(11):1382-1392.
PMID: 31685990
DOI: 10.1038/s41556-019-0413-3.
Flavin-based metabolic cycles are integral features of growth and division in single yeast cells.
Baumgartner B, OLaughlin R, Jin M, Tsimring L, Hao N, Hasty J
Sci Rep. 2018; 8(1):18045.
PMID: 30575765
PMC: 6303410.
DOI: 10.1038/s41598-018-35936-w.
Elucidating the Role of Chromatin State and Transcription Factors on the Regulation of the Yeast Metabolic Cycle: A Multi-Omic Integrative Approach.
Sanchez-Gaya V, Casani-Galdon S, Ugidos M, Kuang Z, Mellor J, Conesa A
Front Genet. 2018; 9:578.
PMID: 30555512
PMC: 6284056.
DOI: 10.3389/fgene.2018.00578.
A minimal "push-pull" bistability model explains oscillations between quiescent and proliferative cell states.
Krishna S, Laxman S
Mol Biol Cell. 2018; 29(19):2243-2258.
PMID: 30044724
PMC: 6249812.
DOI: 10.1091/mbc.E18-01-0017.
Transformative Opportunities for Single-Cell Proteomics.
Specht H, Slavov N
J Proteome Res. 2018; 17(8):2565-2571.
PMID: 29945450
PMC: 6089608.
DOI: 10.1021/acs.jproteome.8b00257.
Similarity-Based Segmentation of Multi-Dimensional Signals.
Machne R, Murray D, Stadler P
Sci Rep. 2017; 7(1):12355.
PMID: 28955039
PMC: 5617875.
DOI: 10.1038/s41598-017-12401-8.