» Articles » PMID: 22056670

Rejuvenating Senescent and Centenarian Human Cells by Reprogramming Through the Pluripotent State

Overview
Journal Genes Dev
Specialty Molecular Biology
Date 2011 Nov 8
PMID 22056670
Citations 266
Authors
Affiliations
Soon will be listed here.
Abstract

Direct reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) provides a unique opportunity to derive patient-specific stem cells with potential applications in tissue replacement therapies and without the ethical concerns of human embryonic stem cells (hESCs). However, cellular senescence, which contributes to aging and restricted longevity, has been described as a barrier to the derivation of iPSCs. Here we demonstrate, using an optimized protocol, that cellular senescence is not a limit to reprogramming and that age-related cellular physiology is reversible. Thus, we show that our iPSCs generated from senescent and centenarian cells have reset telomere size, gene expression profiles, oxidative stress, and mitochondrial metabolism, and are indistinguishable from hESCs. Finally, we show that senescent and centenarian-derived pluripotent stem cells are able to redifferentiate into fully rejuvenated cells. These results provide new insights into iPSC technology and pave the way for regenerative medicine for aged patients.

Citing Articles

Reprogramming to restore youthful epigenetics of senescent nucleus pulposus cells for mitigating intervertebral disc degeneration and alleviating low back pain.

Ma W, Wang W, Zhao L, Fan J, Liu L, Huang L Bone Res. 2025; 13(1):35.

PMID: 40075068 PMC: 11903667. DOI: 10.1038/s41413-025-00416-1.


Restoration of angiogenic capacity in senescent endothelial cells by a pharmacological reprogramming approach.

Kalies K, Knopp K, Koch S, Pilowski C, Wurmbrand L, Sedding D PLoS One. 2025; 20(2):e0319381.

PMID: 40019880 PMC: 11870368. DOI: 10.1371/journal.pone.0319381.


The Potential of Polyphenols in Modulating the Cellular Senescence Process: Implications and Mechanism of Action.

Della Vedova L, Baron G, Morazzoni P, Aldini G, Gado F Pharmaceuticals (Basel). 2025; 18(2).

PMID: 40005954 PMC: 11858549. DOI: 10.3390/ph18020138.


Epigenetic mechanisms regulating CD8+ T cell senescence in aging humans.

Turano P, Akbulut E, Dewald H, Vasilopoulos T, Fitzgerald-Bocarsly P, Herbig U bioRxiv. 2025; .

PMID: 39896543 PMC: 11785101. DOI: 10.1101/2025.01.17.633634.


Stem Cell Therapy for Diseases of Livestock Animals: An In-Depth Review.

Narasimha R, Shreya S, Jayabal V, Yadav V, Rath P, Mishra B Vet Sci. 2025; 12(1).

PMID: 39852942 PMC: 11768649. DOI: 10.3390/vetsci12010067.


References
1.
Alexander B, Coppola G, Perrault S, Peura T, Betts D, King W . Telomere length status of somatic cell sheep clones and their offspring. Mol Reprod Dev. 2007; 74(12):1525-37. DOI: 10.1002/mrd.20735. View

2.
Suhr S, Chang E, Rodriguez R, Wang K, Ross P, Beyhan Z . Telomere dynamics in human cells reprogrammed to pluripotency. PLoS One. 2009; 4(12):e8124. PMC: 2780312. DOI: 10.1371/journal.pone.0008124. View

3.
Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin I . Human induced pluripotent stem cells free of vector and transgene sequences. Science. 2009; 324(5928):797-801. PMC: 2758053. DOI: 10.1126/science.1172482. View

4.
Kawamura T, Suzuki J, Wang Y, Menendez S, Morera L, Raya A . Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature. 2009; 460(7259):1140-4. PMC: 2735889. DOI: 10.1038/nature08311. View

5.
Utikal J, Polo J, Stadtfeld M, Maherali N, Kulalert W, Walsh R . Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature. 2009; 460(7259):1145-8. PMC: 3987892. DOI: 10.1038/nature08285. View