» Articles » PMID: 22025992

Detecting High-grade Squamous Intraepithelial Lesions in the Cervix with Quantitative Spectroscopy and Per-patient Normalization

Overview
Specialty Radiology
Date 2011 Oct 26
PMID 22025992
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

This study develops a spectroscopic algorithm for detection of cervical high grade squamous intraepithelial lesions (HSILs). We collected reflectance and fluorescence spectra with the quantitative spectroscopy probe to measure nine spectroscopic parameters from 43 patients undergoing standard colposcopy with directed biopsy. We found that there is improved accuracy for distinguishing HSIL from non-HSIL (low grade SIL and normal tissue) when we "normalized" spectroscopy parameters by dividing the values extracted from each clinically determined suspicious site by the corresponding value extracted from a clinically normal squamous site from the same patient. The "normalized" scattering parameter (A) at 700nm, best distinguished HSIL from non-HSIL with sensitivity and specificity of 89% and 79% suggesting that a simple, monochromatic instrument measuring only A may accurately detect HSIL.

Citing Articles

Model-based quantitative optical biopsy in multilayer soft tissue models for whole field assessment of nonmelanoma skin cancer.

Kanakaraj B, Unni S J Med Imaging (Bellingham). 2018; 5(1):014506.

PMID: 29594182 PMC: 5863763. DOI: 10.1117/1.JMI.5.1.014506.


Development of thin skin mimicking bilayer solid tissue phantoms for optical spectroscopic studies.

Nivetha K, Sujatha N Biomed Opt Express. 2017; 8(7):3198-3212.

PMID: 28717562 PMC: 5508823. DOI: 10.1364/BOE.8.003198.


Detection of cervical lesions by multivariate analysis of diffuse reflectance spectra: a clinical study.

Prabitha V, Suchetha S, Jayanthi J, Baiju K, Rema P, Anuraj K Lasers Med Sci. 2015; 31(1):67-75.

PMID: 26521184 DOI: 10.1007/s10103-015-1829-z.


Early detection of high-grade squamous intraepithelial lesions in the cervix with quantitative spectroscopic imaging.

Lau C, Mirkovic J, Yu C, ODonoghue G, Galindo L, Dasari R J Biomed Opt. 2013; 18(7):76013.

PMID: 23843090 PMC: 3706901. DOI: 10.1117/1.JBO.18.7.076013.


The use of optical spectroscopy for in vivo detection of cervical pre-cancer.

Hariri Tabrizi S, Aghamiri S, Farzaneh F, Sterenborg H Lasers Med Sci. 2013; 29(2):831-45.

PMID: 23467754 DOI: 10.1007/s10103-013-1288-3.

References
1.
Huh W, Cestero R, Garcia F, Gold M, Guido R, McIntyre-Seltman K . Optical detection of high-grade cervical intraepithelial neoplasia in vivo: results of a 604-patient study. Am J Obstet Gynecol. 2004; 190(5):1249-57. DOI: 10.1016/j.ajog.2003.12.006. View

2.
Chang S, Dawood M, Staerkel G, Utzinger U, Atkinson E, Richards-Kortum R . Fluorescence spectroscopy for cervical precancer detection: Is there variance across the menstrual cycle?. J Biomed Opt. 2002; 7(4):595-602. DOI: 10.1117/1.1509753. View

3.
Nordstrom R, Burke L, Niloff J, Myrtle J . Identification of cervical intraepithelial neoplasia (CIN) using UV-excited fluorescence and diffuse-reflectance tissue spectroscopy. Lasers Surg Med. 2001; 29(2):118-27. DOI: 10.1002/lsm.1097. View

4.
Brookner C, Follen M, Boiko I, Galvan J, Thomsen S, Malpica A . Autofluorescence patterns in short-term cultures of normal cervical tissue. Photochem Photobiol. 2000; 71(6):730-6. DOI: 10.1562/0031-8655(2000)071<0730:apistc>2.0.co;2. View

5.
Orfanoudaki I, Themelis G, Sifakis S, Fragouli D, Panayiotides J, Vazgiouraki E . A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system. Gynecol Oncol. 2004; 96(1):119-31. DOI: 10.1016/j.ygyno.2004.09.013. View