» Articles » PMID: 22015980

Multiscale Modelling of Auxin Transport in the Plant-root Elongation Zone

Overview
Journal J Math Biol
Date 2011 Oct 22
PMID 22015980
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics.

Citing Articles

Mathematical analysis of long-distance polar auxin transport data of pin mutants questions the role of PIN1 as postulated in the chemi-osmotic theory.

Boot K, Hille S, Libbenga K, Libbenga-Nijkamp M, Karami O, Van Duijn B Physiol Plant. 2025; 177(2):e70139.

PMID: 40079179 PMC: 11904757. DOI: 10.1111/ppl.70139.


ZmPILS6 is an auxin efflux carrier required for maize root morphogenesis.

Cowling C, Homayouni A, Callwood J, McReynolds M, Khor J, Ke H Proc Natl Acad Sci U S A. 2024; 121(22):e2313216121.

PMID: 38781209 PMC: 11145266. DOI: 10.1073/pnas.2313216121.


Fluctuations in auxin levels depend upon synchronicity of cell divisions in a one-dimensional model of auxin transport.

Bellows S, Janes G, Avitabile D, King J, Bishopp A, Farcot E PLoS Comput Biol. 2023; 19(11):e1011646.

PMID: 38032890 PMC: 10688697. DOI: 10.1371/journal.pcbi.1011646.


Multiscale Asymptotic Analysis Reveals How Cell Growth and Subcellular Compartments Affect Tissue-Scale Hormone Transport.

Kiradjiev K, Band L Bull Math Biol. 2023; 85(10):101.

PMID: 37702758 PMC: 10499980. DOI: 10.1007/s11538-023-01199-4.


Modeling reveals posttranscriptional regulation of GA metabolism enzymes in response to drought and cold.

Band L, Nelissen H, Preston S, Rymen B, Prinsen E, AbdElgawad H Proc Natl Acad Sci U S A. 2022; 119(31):e2121288119.

PMID: 35878042 PMC: 9351370. DOI: 10.1073/pnas.2121288119.


References
1.
Kramer E, Bennett M . Auxin transport: a field in flux. Trends Plant Sci. 2006; 11(8):382-6. DOI: 10.1016/j.tplants.2006.06.002. View

2.
Feugier F, Mochizuki A, Iwasa Y . Self-organization of the vascular system in plant leaves: inter-dependent dynamics of auxin flux and carrier proteins. J Theor Biol. 2005; 236(4):366-75. DOI: 10.1016/j.jtbi.2005.03.017. View

3.
Kramer E, Frazer N, Baskin T . Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana. J Exp Bot. 2007; 58(11):3005-15. DOI: 10.1093/jxb/erm155. View

4.
Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G . Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell. 2003; 115(5):591-602. DOI: 10.1016/s0092-8674(03)00924-3. View

5.
Lomax T, Mehlhorn R, Briggs W . Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc Natl Acad Sci U S A. 1985; 82(19):6541-5. PMC: 390753. DOI: 10.1073/pnas.82.19.6541. View