» Articles » PMID: 11283340

Auxin Transport Promotes Arabidopsis Lateral Root Initiation

Overview
Journal Plant Cell
Specialties Biology
Cell Biology
Date 2001 Apr 3
PMID 11283340
Citations 375
Authors
Affiliations
Soon will be listed here.
Abstract

Lateral root development in Arabidopsis provides a model for the study of hormonal signals that regulate postembryonic organogenesis in higher plants. Lateral roots originate from pairs of pericycle cells, in several cell files positioned opposite the xylem pole, that initiate a series of asymmetric, transverse divisions. The auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) arrests lateral root development by blocking the first transverse division(s). We investigated the basis of NPA action by using a cell-specific reporter to demonstrate that xylem pole pericycle cells retain their identity in the presence of the auxin transport inhibitor. However, NPA causes indoleacetic acid (IAA) to accumulate in the root apex while reducing levels in basal tissues critical for lateral root initiation. This pattern of IAA redistribution is consistent with NPA blocking basipetal IAA movement from the root tip. Characterization of lateral root development in the shoot meristemless1 mutant demonstrates that root basipetal and leaf acropetal auxin transport activities are required during the initiation and emergence phases, respectively, of lateral root development.

Citing Articles

Decoding the Impact of a Bacterial Strain of on Growth and Stress Tolerance.

Chang Y, Lee P, Hsu C, Wang W, Chang Y, Chuang H Microorganisms. 2024; 12(11).

PMID: 39597672 PMC: 11596720. DOI: 10.3390/microorganisms12112283.


Elucidating the Molecular Mechanisms and Comprehensive Effects of Sludge-Derived Plant Biostimulants on Crop Growth: Insights from Metabolomic Analysis.

Hua Y, Chen S, Tong T, Li X, Ji R, Xu Q Adv Sci (Weinh). 2024; 12(2):e2404210.

PMID: 39540297 PMC: 11727372. DOI: 10.1002/advs.202404210.


Auxin-Mediated Lateral Root Development in Root Galls of Cucumber under Stress.

Ren B, Guo X, Liu J, Feng G, Hao X, Zhang X Plants (Basel). 2024; 13(19).

PMID: 39409549 PMC: 11478513. DOI: 10.3390/plants13192679.


Analysis of auxin responses in the fern Ceratopteris richardii identifies the developmental phase as a major determinant for response properties.

Woudenberg S, Alvarez M, Rienstra J, Levitsky V, Mironova V, Scarpella E Development. 2024; 151(20).

PMID: 39324436 PMC: 11449451. DOI: 10.1242/dev.203026.


Molecular Manipulation of the miR160/ Expression Module Impacts Root Development in .

Zimmerman K, Pegler J, Oultram J, Collings D, Wang M, Grof C Genes (Basel). 2024; 15(8).

PMID: 39202402 PMC: 11353855. DOI: 10.3390/genes15081042.


References
1.
Hobbie L, Estelle M . The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 1995; 7(2):211-20. DOI: 10.1046/j.1365-313x.1995.7020211.x. View

2.
Edlund A, Eklof S, Sundberg B, Moritz T, Sandberg G . A Microscale Technique for Gas Chromatography-Mass Spectrometry Measurements of Picogram Amounts of Indole-3-Acetic Acid in Plant Tissues. Plant Physiol. 1995; 108(3):1043-1047. PMC: 157455. DOI: 10.1104/pp.108.3.1043. View

3.
Muday G, Haworth P . Tomato root growth, gravitropism, and lateral development: correlation with auxin transport. Plant Physiol Biochem. 1994; 32(2):193-203. View

4.
Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A . AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998; 17(23):6903-11. PMC: 1171038. DOI: 10.1093/emboj/17.23.6903. View

5.
Rashotte A, Brady S, Reed R, Ante S, Muday G . Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol. 2000; 122(2):481-90. PMC: 58885. DOI: 10.1104/pp.122.2.481. View